Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > isprm4 | GIF version |
Description: The predicate "is a prime number". A prime number is an integer greater than or equal to 2 whose only divisor greater than or equal to 2 is itself. (Contributed by Paul Chapman, 26-Oct-2012.) |
Ref | Expression |
---|---|
isprm4 | ⊢ (𝑃 ∈ ℙ ↔ (𝑃 ∈ (ℤ≥‘2) ∧ ∀𝑧 ∈ (ℤ≥‘2)(𝑧 ∥ 𝑃 → 𝑧 = 𝑃))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isprm2 12071 | . 2 ⊢ (𝑃 ∈ ℙ ↔ (𝑃 ∈ (ℤ≥‘2) ∧ ∀𝑧 ∈ ℕ (𝑧 ∥ 𝑃 → (𝑧 = 1 ∨ 𝑧 = 𝑃)))) | |
2 | eluz2nn 9525 | . . . . . . . 8 ⊢ (𝑧 ∈ (ℤ≥‘2) → 𝑧 ∈ ℕ) | |
3 | 2 | pm4.71ri 390 | . . . . . . 7 ⊢ (𝑧 ∈ (ℤ≥‘2) ↔ (𝑧 ∈ ℕ ∧ 𝑧 ∈ (ℤ≥‘2))) |
4 | 3 | imbi1i 237 | . . . . . 6 ⊢ ((𝑧 ∈ (ℤ≥‘2) → (𝑧 ∥ 𝑃 → 𝑧 = 𝑃)) ↔ ((𝑧 ∈ ℕ ∧ 𝑧 ∈ (ℤ≥‘2)) → (𝑧 ∥ 𝑃 → 𝑧 = 𝑃))) |
5 | impexp 261 | . . . . . 6 ⊢ (((𝑧 ∈ ℕ ∧ 𝑧 ∈ (ℤ≥‘2)) → (𝑧 ∥ 𝑃 → 𝑧 = 𝑃)) ↔ (𝑧 ∈ ℕ → (𝑧 ∈ (ℤ≥‘2) → (𝑧 ∥ 𝑃 → 𝑧 = 𝑃)))) | |
6 | 4, 5 | bitri 183 | . . . . 5 ⊢ ((𝑧 ∈ (ℤ≥‘2) → (𝑧 ∥ 𝑃 → 𝑧 = 𝑃)) ↔ (𝑧 ∈ ℕ → (𝑧 ∈ (ℤ≥‘2) → (𝑧 ∥ 𝑃 → 𝑧 = 𝑃)))) |
7 | eluz2b3 9563 | . . . . . . . 8 ⊢ (𝑧 ∈ (ℤ≥‘2) ↔ (𝑧 ∈ ℕ ∧ 𝑧 ≠ 1)) | |
8 | 7 | imbi1i 237 | . . . . . . 7 ⊢ ((𝑧 ∈ (ℤ≥‘2) → (𝑧 ∥ 𝑃 → 𝑧 = 𝑃)) ↔ ((𝑧 ∈ ℕ ∧ 𝑧 ≠ 1) → (𝑧 ∥ 𝑃 → 𝑧 = 𝑃))) |
9 | impexp 261 | . . . . . . . 8 ⊢ (((𝑧 ∈ ℕ ∧ 𝑧 ≠ 1) → (𝑧 ∥ 𝑃 → 𝑧 = 𝑃)) ↔ (𝑧 ∈ ℕ → (𝑧 ≠ 1 → (𝑧 ∥ 𝑃 → 𝑧 = 𝑃)))) | |
10 | bi2.04 247 | . . . . . . . . . 10 ⊢ ((𝑧 ≠ 1 → (𝑧 ∥ 𝑃 → 𝑧 = 𝑃)) ↔ (𝑧 ∥ 𝑃 → (𝑧 ≠ 1 → 𝑧 = 𝑃))) | |
11 | df-ne 2341 | . . . . . . . . . . . . 13 ⊢ (𝑧 ≠ 1 ↔ ¬ 𝑧 = 1) | |
12 | 11 | imbi1i 237 | . . . . . . . . . . . 12 ⊢ ((𝑧 ≠ 1 → 𝑧 = 𝑃) ↔ (¬ 𝑧 = 1 → 𝑧 = 𝑃)) |
13 | nnz 9231 | . . . . . . . . . . . . . 14 ⊢ (𝑧 ∈ ℕ → 𝑧 ∈ ℤ) | |
14 | 1zzd 9239 | . . . . . . . . . . . . . 14 ⊢ (𝑧 ∈ ℕ → 1 ∈ ℤ) | |
15 | zdceq 9287 | . . . . . . . . . . . . . 14 ⊢ ((𝑧 ∈ ℤ ∧ 1 ∈ ℤ) → DECID 𝑧 = 1) | |
16 | 13, 14, 15 | syl2anc 409 | . . . . . . . . . . . . 13 ⊢ (𝑧 ∈ ℕ → DECID 𝑧 = 1) |
17 | dfordc 887 | . . . . . . . . . . . . 13 ⊢ (DECID 𝑧 = 1 → ((𝑧 = 1 ∨ 𝑧 = 𝑃) ↔ (¬ 𝑧 = 1 → 𝑧 = 𝑃))) | |
18 | 16, 17 | syl 14 | . . . . . . . . . . . 12 ⊢ (𝑧 ∈ ℕ → ((𝑧 = 1 ∨ 𝑧 = 𝑃) ↔ (¬ 𝑧 = 1 → 𝑧 = 𝑃))) |
19 | 12, 18 | bitr4id 198 | . . . . . . . . . . 11 ⊢ (𝑧 ∈ ℕ → ((𝑧 ≠ 1 → 𝑧 = 𝑃) ↔ (𝑧 = 1 ∨ 𝑧 = 𝑃))) |
20 | 19 | imbi2d 229 | . . . . . . . . . 10 ⊢ (𝑧 ∈ ℕ → ((𝑧 ∥ 𝑃 → (𝑧 ≠ 1 → 𝑧 = 𝑃)) ↔ (𝑧 ∥ 𝑃 → (𝑧 = 1 ∨ 𝑧 = 𝑃)))) |
21 | 10, 20 | syl5bb 191 | . . . . . . . . 9 ⊢ (𝑧 ∈ ℕ → ((𝑧 ≠ 1 → (𝑧 ∥ 𝑃 → 𝑧 = 𝑃)) ↔ (𝑧 ∥ 𝑃 → (𝑧 = 1 ∨ 𝑧 = 𝑃)))) |
22 | 21 | imbi2d 229 | . . . . . . . 8 ⊢ (𝑧 ∈ ℕ → ((𝑧 ∈ ℕ → (𝑧 ≠ 1 → (𝑧 ∥ 𝑃 → 𝑧 = 𝑃))) ↔ (𝑧 ∈ ℕ → (𝑧 ∥ 𝑃 → (𝑧 = 1 ∨ 𝑧 = 𝑃))))) |
23 | 9, 22 | syl5bb 191 | . . . . . . 7 ⊢ (𝑧 ∈ ℕ → (((𝑧 ∈ ℕ ∧ 𝑧 ≠ 1) → (𝑧 ∥ 𝑃 → 𝑧 = 𝑃)) ↔ (𝑧 ∈ ℕ → (𝑧 ∥ 𝑃 → (𝑧 = 1 ∨ 𝑧 = 𝑃))))) |
24 | 8, 23 | syl5bb 191 | . . . . . 6 ⊢ (𝑧 ∈ ℕ → ((𝑧 ∈ (ℤ≥‘2) → (𝑧 ∥ 𝑃 → 𝑧 = 𝑃)) ↔ (𝑧 ∈ ℕ → (𝑧 ∥ 𝑃 → (𝑧 = 1 ∨ 𝑧 = 𝑃))))) |
25 | 24 | pm5.74i 179 | . . . . 5 ⊢ ((𝑧 ∈ ℕ → (𝑧 ∈ (ℤ≥‘2) → (𝑧 ∥ 𝑃 → 𝑧 = 𝑃))) ↔ (𝑧 ∈ ℕ → (𝑧 ∈ ℕ → (𝑧 ∥ 𝑃 → (𝑧 = 1 ∨ 𝑧 = 𝑃))))) |
26 | pm5.4 248 | . . . . 5 ⊢ ((𝑧 ∈ ℕ → (𝑧 ∈ ℕ → (𝑧 ∥ 𝑃 → (𝑧 = 1 ∨ 𝑧 = 𝑃)))) ↔ (𝑧 ∈ ℕ → (𝑧 ∥ 𝑃 → (𝑧 = 1 ∨ 𝑧 = 𝑃)))) | |
27 | 6, 25, 26 | 3bitri 205 | . . . 4 ⊢ ((𝑧 ∈ (ℤ≥‘2) → (𝑧 ∥ 𝑃 → 𝑧 = 𝑃)) ↔ (𝑧 ∈ ℕ → (𝑧 ∥ 𝑃 → (𝑧 = 1 ∨ 𝑧 = 𝑃)))) |
28 | 27 | ralbii2 2480 | . . 3 ⊢ (∀𝑧 ∈ (ℤ≥‘2)(𝑧 ∥ 𝑃 → 𝑧 = 𝑃) ↔ ∀𝑧 ∈ ℕ (𝑧 ∥ 𝑃 → (𝑧 = 1 ∨ 𝑧 = 𝑃))) |
29 | 28 | anbi2i 454 | . 2 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ ∀𝑧 ∈ (ℤ≥‘2)(𝑧 ∥ 𝑃 → 𝑧 = 𝑃)) ↔ (𝑃 ∈ (ℤ≥‘2) ∧ ∀𝑧 ∈ ℕ (𝑧 ∥ 𝑃 → (𝑧 = 1 ∨ 𝑧 = 𝑃)))) |
30 | 1, 29 | bitr4i 186 | 1 ⊢ (𝑃 ∈ ℙ ↔ (𝑃 ∈ (ℤ≥‘2) ∧ ∀𝑧 ∈ (ℤ≥‘2)(𝑧 ∥ 𝑃 → 𝑧 = 𝑃))) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 103 ↔ wb 104 ∨ wo 703 DECID wdc 829 = wceq 1348 ∈ wcel 2141 ≠ wne 2340 ∀wral 2448 class class class wbr 3989 ‘cfv 5198 1c1 7775 ℕcn 8878 2c2 8929 ℤcz 9212 ℤ≥cuz 9487 ∥ cdvds 11749 ℙcprime 12061 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4104 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-iinf 4572 ax-cnex 7865 ax-resscn 7866 ax-1cn 7867 ax-1re 7868 ax-icn 7869 ax-addcl 7870 ax-addrcl 7871 ax-mulcl 7872 ax-mulrcl 7873 ax-addcom 7874 ax-mulcom 7875 ax-addass 7876 ax-mulass 7877 ax-distr 7878 ax-i2m1 7879 ax-0lt1 7880 ax-1rid 7881 ax-0id 7882 ax-rnegex 7883 ax-precex 7884 ax-cnre 7885 ax-pre-ltirr 7886 ax-pre-ltwlin 7887 ax-pre-lttrn 7888 ax-pre-apti 7889 ax-pre-ltadd 7890 ax-pre-mulgt0 7891 ax-pre-mulext 7892 ax-arch 7893 ax-caucvg 7894 |
This theorem depends on definitions: df-bi 116 df-dc 830 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rmo 2456 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-if 3527 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-tr 4088 df-id 4278 df-po 4281 df-iso 4282 df-iord 4351 df-on 4353 df-ilim 4354 df-suc 4356 df-iom 4575 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-riota 5809 df-ov 5856 df-oprab 5857 df-mpo 5858 df-1st 6119 df-2nd 6120 df-recs 6284 df-frec 6370 df-1o 6395 df-2o 6396 df-er 6513 df-en 6719 df-pnf 7956 df-mnf 7957 df-xr 7958 df-ltxr 7959 df-le 7960 df-sub 8092 df-neg 8093 df-reap 8494 df-ap 8501 df-div 8590 df-inn 8879 df-2 8937 df-3 8938 df-4 8939 df-n0 9136 df-z 9213 df-uz 9488 df-q 9579 df-rp 9611 df-seqfrec 10402 df-exp 10476 df-cj 10806 df-re 10807 df-im 10808 df-rsqrt 10962 df-abs 10963 df-dvds 11750 df-prm 12062 |
This theorem is referenced by: nprm 12077 prmuz2 12085 dvdsprm 12091 |
Copyright terms: Public domain | W3C validator |