ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  limcdifap GIF version

Theorem limcdifap 14134
Description: It suffices to consider functions which are not defined at 𝐡 to define the limit of a function. In particular, the value of the original function 𝐹 at 𝐡 does not affect the limit of 𝐹. (Contributed by Mario Carneiro, 25-Dec-2016.) (Revised by Jim Kingdon, 3-Jun-2023.)
Hypotheses
Ref Expression
limccl.f (πœ‘ β†’ 𝐹:π΄βŸΆβ„‚)
limcdifap.a (πœ‘ β†’ 𝐴 βŠ† β„‚)
Assertion
Ref Expression
limcdifap (πœ‘ β†’ (𝐹 limβ„‚ 𝐡) = ((𝐹 β†Ύ {π‘₯ ∈ 𝐴 ∣ π‘₯ # 𝐡}) limβ„‚ 𝐡))
Distinct variable groups:   π‘₯,𝐴   π‘₯,𝐡
Allowed substitution hints:   πœ‘(π‘₯)   𝐹(π‘₯)

Proof of Theorem limcdifap
Dummy variables 𝑑 𝑒 𝑒 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 limcrcl 14130 . . . . 5 (𝑒 ∈ (𝐹 limβ„‚ 𝐡) β†’ (𝐹:dom πΉβŸΆβ„‚ ∧ dom 𝐹 βŠ† β„‚ ∧ 𝐡 ∈ β„‚))
21simp3d 1011 . . . 4 (𝑒 ∈ (𝐹 limβ„‚ 𝐡) β†’ 𝐡 ∈ β„‚)
32a1i 9 . . 3 (πœ‘ β†’ (𝑒 ∈ (𝐹 limβ„‚ 𝐡) β†’ 𝐡 ∈ β„‚))
4 limcrcl 14130 . . . . 5 (𝑒 ∈ ((𝐹 β†Ύ {π‘₯ ∈ 𝐴 ∣ π‘₯ # 𝐡}) limβ„‚ 𝐡) β†’ ((𝐹 β†Ύ {π‘₯ ∈ 𝐴 ∣ π‘₯ # 𝐡}):dom (𝐹 β†Ύ {π‘₯ ∈ 𝐴 ∣ π‘₯ # 𝐡})βŸΆβ„‚ ∧ dom (𝐹 β†Ύ {π‘₯ ∈ 𝐴 ∣ π‘₯ # 𝐡}) βŠ† β„‚ ∧ 𝐡 ∈ β„‚))
54simp3d 1011 . . . 4 (𝑒 ∈ ((𝐹 β†Ύ {π‘₯ ∈ 𝐴 ∣ π‘₯ # 𝐡}) limβ„‚ 𝐡) β†’ 𝐡 ∈ β„‚)
65a1i 9 . . 3 (πœ‘ β†’ (𝑒 ∈ ((𝐹 β†Ύ {π‘₯ ∈ 𝐴 ∣ π‘₯ # 𝐡}) limβ„‚ 𝐡) β†’ 𝐡 ∈ β„‚))
7 breq1 4007 . . . . . . . . . . . . . . . . 17 (π‘₯ = 𝑧 β†’ (π‘₯ # 𝐡 ↔ 𝑧 # 𝐡))
8 simplr 528 . . . . . . . . . . . . . . . . 17 ((((πœ‘ ∧ 𝐡 ∈ β„‚) ∧ 𝑧 ∈ 𝐴) ∧ 𝑧 # 𝐡) β†’ 𝑧 ∈ 𝐴)
9 simpr 110 . . . . . . . . . . . . . . . . 17 ((((πœ‘ ∧ 𝐡 ∈ β„‚) ∧ 𝑧 ∈ 𝐴) ∧ 𝑧 # 𝐡) β†’ 𝑧 # 𝐡)
107, 8, 9elrabd 2896 . . . . . . . . . . . . . . . 16 ((((πœ‘ ∧ 𝐡 ∈ β„‚) ∧ 𝑧 ∈ 𝐴) ∧ 𝑧 # 𝐡) β†’ 𝑧 ∈ {π‘₯ ∈ 𝐴 ∣ π‘₯ # 𝐡})
11 fvres 5540 . . . . . . . . . . . . . . . . 17 (𝑧 ∈ {π‘₯ ∈ 𝐴 ∣ π‘₯ # 𝐡} β†’ ((𝐹 β†Ύ {π‘₯ ∈ 𝐴 ∣ π‘₯ # 𝐡})β€˜π‘§) = (πΉβ€˜π‘§))
1211eqcomd 2183 . . . . . . . . . . . . . . . 16 (𝑧 ∈ {π‘₯ ∈ 𝐴 ∣ π‘₯ # 𝐡} β†’ (πΉβ€˜π‘§) = ((𝐹 β†Ύ {π‘₯ ∈ 𝐴 ∣ π‘₯ # 𝐡})β€˜π‘§))
1310, 12syl 14 . . . . . . . . . . . . . . 15 ((((πœ‘ ∧ 𝐡 ∈ β„‚) ∧ 𝑧 ∈ 𝐴) ∧ 𝑧 # 𝐡) β†’ (πΉβ€˜π‘§) = ((𝐹 β†Ύ {π‘₯ ∈ 𝐴 ∣ π‘₯ # 𝐡})β€˜π‘§))
1413fvoveq1d 5897 . . . . . . . . . . . . . 14 ((((πœ‘ ∧ 𝐡 ∈ β„‚) ∧ 𝑧 ∈ 𝐴) ∧ 𝑧 # 𝐡) β†’ (absβ€˜((πΉβ€˜π‘§) βˆ’ 𝑒)) = (absβ€˜(((𝐹 β†Ύ {π‘₯ ∈ 𝐴 ∣ π‘₯ # 𝐡})β€˜π‘§) βˆ’ 𝑒)))
1514breq1d 4014 . . . . . . . . . . . . 13 ((((πœ‘ ∧ 𝐡 ∈ β„‚) ∧ 𝑧 ∈ 𝐴) ∧ 𝑧 # 𝐡) β†’ ((absβ€˜((πΉβ€˜π‘§) βˆ’ 𝑒)) < 𝑒 ↔ (absβ€˜(((𝐹 β†Ύ {π‘₯ ∈ 𝐴 ∣ π‘₯ # 𝐡})β€˜π‘§) βˆ’ 𝑒)) < 𝑒))
1615imbi2d 230 . . . . . . . . . . . 12 ((((πœ‘ ∧ 𝐡 ∈ β„‚) ∧ 𝑧 ∈ 𝐴) ∧ 𝑧 # 𝐡) β†’ (((absβ€˜(𝑧 βˆ’ 𝐡)) < 𝑑 β†’ (absβ€˜((πΉβ€˜π‘§) βˆ’ 𝑒)) < 𝑒) ↔ ((absβ€˜(𝑧 βˆ’ 𝐡)) < 𝑑 β†’ (absβ€˜(((𝐹 β†Ύ {π‘₯ ∈ 𝐴 ∣ π‘₯ # 𝐡})β€˜π‘§) βˆ’ 𝑒)) < 𝑒)))
1716pm5.74da 443 . . . . . . . . . . 11 (((πœ‘ ∧ 𝐡 ∈ β„‚) ∧ 𝑧 ∈ 𝐴) β†’ ((𝑧 # 𝐡 β†’ ((absβ€˜(𝑧 βˆ’ 𝐡)) < 𝑑 β†’ (absβ€˜((πΉβ€˜π‘§) βˆ’ 𝑒)) < 𝑒)) ↔ (𝑧 # 𝐡 β†’ ((absβ€˜(𝑧 βˆ’ 𝐡)) < 𝑑 β†’ (absβ€˜(((𝐹 β†Ύ {π‘₯ ∈ 𝐴 ∣ π‘₯ # 𝐡})β€˜π‘§) βˆ’ 𝑒)) < 𝑒))))
18 impexp 263 . . . . . . . . . . 11 (((𝑧 # 𝐡 ∧ (absβ€˜(𝑧 βˆ’ 𝐡)) < 𝑑) β†’ (absβ€˜((πΉβ€˜π‘§) βˆ’ 𝑒)) < 𝑒) ↔ (𝑧 # 𝐡 β†’ ((absβ€˜(𝑧 βˆ’ 𝐡)) < 𝑑 β†’ (absβ€˜((πΉβ€˜π‘§) βˆ’ 𝑒)) < 𝑒)))
19 impexp 263 . . . . . . . . . . . . 13 (((𝑧 # 𝐡 ∧ (absβ€˜(𝑧 βˆ’ 𝐡)) < 𝑑) β†’ (absβ€˜(((𝐹 β†Ύ {π‘₯ ∈ 𝐴 ∣ π‘₯ # 𝐡})β€˜π‘§) βˆ’ 𝑒)) < 𝑒) ↔ (𝑧 # 𝐡 β†’ ((absβ€˜(𝑧 βˆ’ 𝐡)) < 𝑑 β†’ (absβ€˜(((𝐹 β†Ύ {π‘₯ ∈ 𝐴 ∣ π‘₯ # 𝐡})β€˜π‘§) βˆ’ 𝑒)) < 𝑒)))
2019imbi2i 226 . . . . . . . . . . . 12 ((𝑧 # 𝐡 β†’ ((𝑧 # 𝐡 ∧ (absβ€˜(𝑧 βˆ’ 𝐡)) < 𝑑) β†’ (absβ€˜(((𝐹 β†Ύ {π‘₯ ∈ 𝐴 ∣ π‘₯ # 𝐡})β€˜π‘§) βˆ’ 𝑒)) < 𝑒)) ↔ (𝑧 # 𝐡 β†’ (𝑧 # 𝐡 β†’ ((absβ€˜(𝑧 βˆ’ 𝐡)) < 𝑑 β†’ (absβ€˜(((𝐹 β†Ύ {π‘₯ ∈ 𝐴 ∣ π‘₯ # 𝐡})β€˜π‘§) βˆ’ 𝑒)) < 𝑒))))
21 pm5.4 249 . . . . . . . . . . . 12 ((𝑧 # 𝐡 β†’ (𝑧 # 𝐡 β†’ ((absβ€˜(𝑧 βˆ’ 𝐡)) < 𝑑 β†’ (absβ€˜(((𝐹 β†Ύ {π‘₯ ∈ 𝐴 ∣ π‘₯ # 𝐡})β€˜π‘§) βˆ’ 𝑒)) < 𝑒))) ↔ (𝑧 # 𝐡 β†’ ((absβ€˜(𝑧 βˆ’ 𝐡)) < 𝑑 β†’ (absβ€˜(((𝐹 β†Ύ {π‘₯ ∈ 𝐴 ∣ π‘₯ # 𝐡})β€˜π‘§) βˆ’ 𝑒)) < 𝑒)))
2220, 21bitri 184 . . . . . . . . . . 11 ((𝑧 # 𝐡 β†’ ((𝑧 # 𝐡 ∧ (absβ€˜(𝑧 βˆ’ 𝐡)) < 𝑑) β†’ (absβ€˜(((𝐹 β†Ύ {π‘₯ ∈ 𝐴 ∣ π‘₯ # 𝐡})β€˜π‘§) βˆ’ 𝑒)) < 𝑒)) ↔ (𝑧 # 𝐡 β†’ ((absβ€˜(𝑧 βˆ’ 𝐡)) < 𝑑 β†’ (absβ€˜(((𝐹 β†Ύ {π‘₯ ∈ 𝐴 ∣ π‘₯ # 𝐡})β€˜π‘§) βˆ’ 𝑒)) < 𝑒)))
2317, 18, 223bitr4g 223 . . . . . . . . . 10 (((πœ‘ ∧ 𝐡 ∈ β„‚) ∧ 𝑧 ∈ 𝐴) β†’ (((𝑧 # 𝐡 ∧ (absβ€˜(𝑧 βˆ’ 𝐡)) < 𝑑) β†’ (absβ€˜((πΉβ€˜π‘§) βˆ’ 𝑒)) < 𝑒) ↔ (𝑧 # 𝐡 β†’ ((𝑧 # 𝐡 ∧ (absβ€˜(𝑧 βˆ’ 𝐡)) < 𝑑) β†’ (absβ€˜(((𝐹 β†Ύ {π‘₯ ∈ 𝐴 ∣ π‘₯ # 𝐡})β€˜π‘§) βˆ’ 𝑒)) < 𝑒))))
2423ralbidva 2473 . . . . . . . . 9 ((πœ‘ ∧ 𝐡 ∈ β„‚) β†’ (βˆ€π‘§ ∈ 𝐴 ((𝑧 # 𝐡 ∧ (absβ€˜(𝑧 βˆ’ 𝐡)) < 𝑑) β†’ (absβ€˜((πΉβ€˜π‘§) βˆ’ 𝑒)) < 𝑒) ↔ βˆ€π‘§ ∈ 𝐴 (𝑧 # 𝐡 β†’ ((𝑧 # 𝐡 ∧ (absβ€˜(𝑧 βˆ’ 𝐡)) < 𝑑) β†’ (absβ€˜(((𝐹 β†Ύ {π‘₯ ∈ 𝐴 ∣ π‘₯ # 𝐡})β€˜π‘§) βˆ’ 𝑒)) < 𝑒))))
257ralrab 2899 . . . . . . . . 9 (βˆ€π‘§ ∈ {π‘₯ ∈ 𝐴 ∣ π‘₯ # 𝐡} ((𝑧 # 𝐡 ∧ (absβ€˜(𝑧 βˆ’ 𝐡)) < 𝑑) β†’ (absβ€˜(((𝐹 β†Ύ {π‘₯ ∈ 𝐴 ∣ π‘₯ # 𝐡})β€˜π‘§) βˆ’ 𝑒)) < 𝑒) ↔ βˆ€π‘§ ∈ 𝐴 (𝑧 # 𝐡 β†’ ((𝑧 # 𝐡 ∧ (absβ€˜(𝑧 βˆ’ 𝐡)) < 𝑑) β†’ (absβ€˜(((𝐹 β†Ύ {π‘₯ ∈ 𝐴 ∣ π‘₯ # 𝐡})β€˜π‘§) βˆ’ 𝑒)) < 𝑒)))
2624, 25bitr4di 198 . . . . . . . 8 ((πœ‘ ∧ 𝐡 ∈ β„‚) β†’ (βˆ€π‘§ ∈ 𝐴 ((𝑧 # 𝐡 ∧ (absβ€˜(𝑧 βˆ’ 𝐡)) < 𝑑) β†’ (absβ€˜((πΉβ€˜π‘§) βˆ’ 𝑒)) < 𝑒) ↔ βˆ€π‘§ ∈ {π‘₯ ∈ 𝐴 ∣ π‘₯ # 𝐡} ((𝑧 # 𝐡 ∧ (absβ€˜(𝑧 βˆ’ 𝐡)) < 𝑑) β†’ (absβ€˜(((𝐹 β†Ύ {π‘₯ ∈ 𝐴 ∣ π‘₯ # 𝐡})β€˜π‘§) βˆ’ 𝑒)) < 𝑒)))
2726rexbidv 2478 . . . . . . 7 ((πœ‘ ∧ 𝐡 ∈ β„‚) β†’ (βˆƒπ‘‘ ∈ ℝ+ βˆ€π‘§ ∈ 𝐴 ((𝑧 # 𝐡 ∧ (absβ€˜(𝑧 βˆ’ 𝐡)) < 𝑑) β†’ (absβ€˜((πΉβ€˜π‘§) βˆ’ 𝑒)) < 𝑒) ↔ βˆƒπ‘‘ ∈ ℝ+ βˆ€π‘§ ∈ {π‘₯ ∈ 𝐴 ∣ π‘₯ # 𝐡} ((𝑧 # 𝐡 ∧ (absβ€˜(𝑧 βˆ’ 𝐡)) < 𝑑) β†’ (absβ€˜(((𝐹 β†Ύ {π‘₯ ∈ 𝐴 ∣ π‘₯ # 𝐡})β€˜π‘§) βˆ’ 𝑒)) < 𝑒)))
2827ralbidv 2477 . . . . . 6 ((πœ‘ ∧ 𝐡 ∈ β„‚) β†’ (βˆ€π‘’ ∈ ℝ+ βˆƒπ‘‘ ∈ ℝ+ βˆ€π‘§ ∈ 𝐴 ((𝑧 # 𝐡 ∧ (absβ€˜(𝑧 βˆ’ 𝐡)) < 𝑑) β†’ (absβ€˜((πΉβ€˜π‘§) βˆ’ 𝑒)) < 𝑒) ↔ βˆ€π‘’ ∈ ℝ+ βˆƒπ‘‘ ∈ ℝ+ βˆ€π‘§ ∈ {π‘₯ ∈ 𝐴 ∣ π‘₯ # 𝐡} ((𝑧 # 𝐡 ∧ (absβ€˜(𝑧 βˆ’ 𝐡)) < 𝑑) β†’ (absβ€˜(((𝐹 β†Ύ {π‘₯ ∈ 𝐴 ∣ π‘₯ # 𝐡})β€˜π‘§) βˆ’ 𝑒)) < 𝑒)))
2928anbi2d 464 . . . . 5 ((πœ‘ ∧ 𝐡 ∈ β„‚) β†’ ((𝑒 ∈ β„‚ ∧ βˆ€π‘’ ∈ ℝ+ βˆƒπ‘‘ ∈ ℝ+ βˆ€π‘§ ∈ 𝐴 ((𝑧 # 𝐡 ∧ (absβ€˜(𝑧 βˆ’ 𝐡)) < 𝑑) β†’ (absβ€˜((πΉβ€˜π‘§) βˆ’ 𝑒)) < 𝑒)) ↔ (𝑒 ∈ β„‚ ∧ βˆ€π‘’ ∈ ℝ+ βˆƒπ‘‘ ∈ ℝ+ βˆ€π‘§ ∈ {π‘₯ ∈ 𝐴 ∣ π‘₯ # 𝐡} ((𝑧 # 𝐡 ∧ (absβ€˜(𝑧 βˆ’ 𝐡)) < 𝑑) β†’ (absβ€˜(((𝐹 β†Ύ {π‘₯ ∈ 𝐴 ∣ π‘₯ # 𝐡})β€˜π‘§) βˆ’ 𝑒)) < 𝑒))))
30 limccl.f . . . . . . 7 (πœ‘ β†’ 𝐹:π΄βŸΆβ„‚)
3130adantr 276 . . . . . 6 ((πœ‘ ∧ 𝐡 ∈ β„‚) β†’ 𝐹:π΄βŸΆβ„‚)
32 limcdifap.a . . . . . . 7 (πœ‘ β†’ 𝐴 βŠ† β„‚)
3332adantr 276 . . . . . 6 ((πœ‘ ∧ 𝐡 ∈ β„‚) β†’ 𝐴 βŠ† β„‚)
34 simpr 110 . . . . . 6 ((πœ‘ ∧ 𝐡 ∈ β„‚) β†’ 𝐡 ∈ β„‚)
3531, 33, 34ellimc3ap 14133 . . . . 5 ((πœ‘ ∧ 𝐡 ∈ β„‚) β†’ (𝑒 ∈ (𝐹 limβ„‚ 𝐡) ↔ (𝑒 ∈ β„‚ ∧ βˆ€π‘’ ∈ ℝ+ βˆƒπ‘‘ ∈ ℝ+ βˆ€π‘§ ∈ 𝐴 ((𝑧 # 𝐡 ∧ (absβ€˜(𝑧 βˆ’ 𝐡)) < 𝑑) β†’ (absβ€˜((πΉβ€˜π‘§) βˆ’ 𝑒)) < 𝑒))))
36 ssrab2 3241 . . . . . . 7 {π‘₯ ∈ 𝐴 ∣ π‘₯ # 𝐡} βŠ† 𝐴
37 fssres 5392 . . . . . . 7 ((𝐹:π΄βŸΆβ„‚ ∧ {π‘₯ ∈ 𝐴 ∣ π‘₯ # 𝐡} βŠ† 𝐴) β†’ (𝐹 β†Ύ {π‘₯ ∈ 𝐴 ∣ π‘₯ # 𝐡}):{π‘₯ ∈ 𝐴 ∣ π‘₯ # 𝐡}βŸΆβ„‚)
3831, 36, 37sylancl 413 . . . . . 6 ((πœ‘ ∧ 𝐡 ∈ β„‚) β†’ (𝐹 β†Ύ {π‘₯ ∈ 𝐴 ∣ π‘₯ # 𝐡}):{π‘₯ ∈ 𝐴 ∣ π‘₯ # 𝐡}βŸΆβ„‚)
3936, 33sstrid 3167 . . . . . 6 ((πœ‘ ∧ 𝐡 ∈ β„‚) β†’ {π‘₯ ∈ 𝐴 ∣ π‘₯ # 𝐡} βŠ† β„‚)
4038, 39, 34ellimc3ap 14133 . . . . 5 ((πœ‘ ∧ 𝐡 ∈ β„‚) β†’ (𝑒 ∈ ((𝐹 β†Ύ {π‘₯ ∈ 𝐴 ∣ π‘₯ # 𝐡}) limβ„‚ 𝐡) ↔ (𝑒 ∈ β„‚ ∧ βˆ€π‘’ ∈ ℝ+ βˆƒπ‘‘ ∈ ℝ+ βˆ€π‘§ ∈ {π‘₯ ∈ 𝐴 ∣ π‘₯ # 𝐡} ((𝑧 # 𝐡 ∧ (absβ€˜(𝑧 βˆ’ 𝐡)) < 𝑑) β†’ (absβ€˜(((𝐹 β†Ύ {π‘₯ ∈ 𝐴 ∣ π‘₯ # 𝐡})β€˜π‘§) βˆ’ 𝑒)) < 𝑒))))
4129, 35, 403bitr4d 220 . . . 4 ((πœ‘ ∧ 𝐡 ∈ β„‚) β†’ (𝑒 ∈ (𝐹 limβ„‚ 𝐡) ↔ 𝑒 ∈ ((𝐹 β†Ύ {π‘₯ ∈ 𝐴 ∣ π‘₯ # 𝐡}) limβ„‚ 𝐡)))
4241ex 115 . . 3 (πœ‘ β†’ (𝐡 ∈ β„‚ β†’ (𝑒 ∈ (𝐹 limβ„‚ 𝐡) ↔ 𝑒 ∈ ((𝐹 β†Ύ {π‘₯ ∈ 𝐴 ∣ π‘₯ # 𝐡}) limβ„‚ 𝐡))))
433, 6, 42pm5.21ndd 705 . 2 (πœ‘ β†’ (𝑒 ∈ (𝐹 limβ„‚ 𝐡) ↔ 𝑒 ∈ ((𝐹 β†Ύ {π‘₯ ∈ 𝐴 ∣ π‘₯ # 𝐡}) limβ„‚ 𝐡)))
4443eqrdv 2175 1 (πœ‘ β†’ (𝐹 limβ„‚ 𝐡) = ((𝐹 β†Ύ {π‘₯ ∈ 𝐴 ∣ π‘₯ # 𝐡}) limβ„‚ 𝐡))
Colors of variables: wff set class
Syntax hints:   β†’ wi 4   ∧ wa 104   ↔ wb 105   = wceq 1353   ∈ wcel 2148  βˆ€wral 2455  βˆƒwrex 2456  {crab 2459   βŠ† wss 3130   class class class wbr 4004  dom cdm 4627   β†Ύ cres 4629  βŸΆwf 5213  β€˜cfv 5217  (class class class)co 5875  β„‚cc 7809   < clt 7992   βˆ’ cmin 8128   # cap 8538  β„+crp 9653  abscabs 11006   limβ„‚ climc 14126
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4122  ax-pow 4175  ax-pr 4210  ax-un 4434  ax-setind 4537  ax-cnex 7902
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2740  df-sbc 2964  df-dif 3132  df-un 3134  df-in 3136  df-ss 3143  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-br 4005  df-opab 4066  df-id 4294  df-xp 4633  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-rn 4638  df-res 4639  df-iota 5179  df-fun 5219  df-fn 5220  df-f 5221  df-fv 5225  df-ov 5878  df-oprab 5879  df-mpo 5880  df-pm 6651  df-limced 14128
This theorem is referenced by:  dvcnp2cntop  14166  dvmulxxbr  14169  dvrecap  14180
  Copyright terms: Public domain W3C validator