Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > bi2.04 | GIF version |
Description: Logical equivalence of commuted antecedents. Part of Theorem *4.87 of [WhiteheadRussell] p. 122. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
bi2.04 | ⊢ ((𝜑 → (𝜓 → 𝜒)) ↔ (𝜓 → (𝜑 → 𝜒))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm2.04 82 | . 2 ⊢ ((𝜑 → (𝜓 → 𝜒)) → (𝜓 → (𝜑 → 𝜒))) | |
2 | pm2.04 82 | . 2 ⊢ ((𝜓 → (𝜑 → 𝜒)) → (𝜑 → (𝜓 → 𝜒))) | |
3 | 1, 2 | impbii 125 | 1 ⊢ ((𝜑 → (𝜓 → 𝜒)) ↔ (𝜓 → (𝜑 → 𝜒))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: imim21b 251 pm4.87 547 imimorbdc 886 sbcom2v 1973 mor 2056 r19.21t 2541 reu8 2922 ra5 3039 unissb 3819 reusv3 4438 zfregfr 4551 tfi 4559 fun11 5255 prime 9290 raluz2 9517 isprm3 12050 isprm4 12051 bj-inf2vnlem2 13853 |
Copyright terms: Public domain | W3C validator |