| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > bi2.04 | GIF version | ||
| Description: Logical equivalence of commuted antecedents. Part of Theorem *4.87 of [WhiteheadRussell] p. 122. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| bi2.04 | ⊢ ((𝜑 → (𝜓 → 𝜒)) ↔ (𝜓 → (𝜑 → 𝜒))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm2.04 82 | . 2 ⊢ ((𝜑 → (𝜓 → 𝜒)) → (𝜓 → (𝜑 → 𝜒))) | |
| 2 | pm2.04 82 | . 2 ⊢ ((𝜓 → (𝜑 → 𝜒)) → (𝜑 → (𝜓 → 𝜒))) | |
| 3 | 1, 2 | impbii 126 | 1 ⊢ ((𝜑 → (𝜓 → 𝜒)) ↔ (𝜓 → (𝜑 → 𝜒))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: imim21b 253 pm4.87 557 imimorbdc 898 sbcom2v 2014 mor 2097 r19.21t 2582 reu8 2973 ra5 3091 unissb 3886 reusv3 4515 zfregfr 4630 tfi 4638 fun11 5350 prime 9492 raluz2 9720 isprm3 12515 isprm4 12516 bj-inf2vnlem2 16045 |
| Copyright terms: Public domain | W3C validator |