ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bi2.04 GIF version

Theorem bi2.04 248
Description: Logical equivalence of commuted antecedents. Part of Theorem *4.87 of [WhiteheadRussell] p. 122. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
bi2.04 ((𝜑 → (𝜓𝜒)) ↔ (𝜓 → (𝜑𝜒)))

Proof of Theorem bi2.04
StepHypRef Expression
1 pm2.04 82 . 2 ((𝜑 → (𝜓𝜒)) → (𝜓 → (𝜑𝜒)))
2 pm2.04 82 . 2 ((𝜓 → (𝜑𝜒)) → (𝜑 → (𝜓𝜒)))
31, 2impbii 126 1 ((𝜑 → (𝜓𝜒)) ↔ (𝜓 → (𝜑𝜒)))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  imim21b  253  pm4.87  557  imimorbdc  896  sbcom2v  1985  mor  2068  r19.21t  2552  reu8  2935  ra5  3053  unissb  3841  reusv3  4462  zfregfr  4575  tfi  4583  fun11  5285  prime  9354  raluz2  9581  isprm3  12120  isprm4  12121  bj-inf2vnlem2  14808
  Copyright terms: Public domain W3C validator