Proof of Theorem sbequ8
| Step | Hyp | Ref
 | Expression | 
| 1 |   | pm5.4 249 | 
. . 3
⊢ ((𝑥 = 𝑦 → (𝑥 = 𝑦 → 𝜑)) ↔ (𝑥 = 𝑦 → 𝜑)) | 
| 2 |   | simpl 109 | 
. . . . . 6
⊢ ((𝑥 = 𝑦 ∧ (𝑥 = 𝑦 → 𝜑)) → 𝑥 = 𝑦) | 
| 3 |   | pm3.35 347 | 
. . . . . 6
⊢ ((𝑥 = 𝑦 ∧ (𝑥 = 𝑦 → 𝜑)) → 𝜑) | 
| 4 | 2, 3 | jca 306 | 
. . . . 5
⊢ ((𝑥 = 𝑦 ∧ (𝑥 = 𝑦 → 𝜑)) → (𝑥 = 𝑦 ∧ 𝜑)) | 
| 5 |   | simpl 109 | 
. . . . . 6
⊢ ((𝑥 = 𝑦 ∧ 𝜑) → 𝑥 = 𝑦) | 
| 6 |   | pm3.4 333 | 
. . . . . 6
⊢ ((𝑥 = 𝑦 ∧ 𝜑) → (𝑥 = 𝑦 → 𝜑)) | 
| 7 | 5, 6 | jca 306 | 
. . . . 5
⊢ ((𝑥 = 𝑦 ∧ 𝜑) → (𝑥 = 𝑦 ∧ (𝑥 = 𝑦 → 𝜑))) | 
| 8 | 4, 7 | impbii 126 | 
. . . 4
⊢ ((𝑥 = 𝑦 ∧ (𝑥 = 𝑦 → 𝜑)) ↔ (𝑥 = 𝑦 ∧ 𝜑)) | 
| 9 | 8 | exbii 1619 | 
. . 3
⊢
(∃𝑥(𝑥 = 𝑦 ∧ (𝑥 = 𝑦 → 𝜑)) ↔ ∃𝑥(𝑥 = 𝑦 ∧ 𝜑)) | 
| 10 | 1, 9 | anbi12i 460 | 
. 2
⊢ (((𝑥 = 𝑦 → (𝑥 = 𝑦 → 𝜑)) ∧ ∃𝑥(𝑥 = 𝑦 ∧ (𝑥 = 𝑦 → 𝜑))) ↔ ((𝑥 = 𝑦 → 𝜑) ∧ ∃𝑥(𝑥 = 𝑦 ∧ 𝜑))) | 
| 11 |   | df-sb 1777 | 
. 2
⊢ ([𝑦 / 𝑥](𝑥 = 𝑦 → 𝜑) ↔ ((𝑥 = 𝑦 → (𝑥 = 𝑦 → 𝜑)) ∧ ∃𝑥(𝑥 = 𝑦 ∧ (𝑥 = 𝑦 → 𝜑)))) | 
| 12 |   | df-sb 1777 | 
. 2
⊢ ([𝑦 / 𝑥]𝜑 ↔ ((𝑥 = 𝑦 → 𝜑) ∧ ∃𝑥(𝑥 = 𝑦 ∧ 𝜑))) | 
| 13 | 10, 11, 12 | 3bitr4ri 213 | 
1
⊢ ([𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥](𝑥 = 𝑦 → 𝜑)) |