Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > jaob | GIF version |
Description: Disjunction of antecedents. Compare Theorem *4.77 of [WhiteheadRussell] p. 121. Alias of ax-io 704. (Contributed by NM, 30-May-1994.) (Revised by Mario Carneiro, 31-Jan-2015.) |
Ref | Expression |
---|---|
jaob | ⊢ (((𝜑 ∨ 𝜒) → 𝜓) ↔ ((𝜑 → 𝜓) ∧ (𝜒 → 𝜓))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-io 704 | 1 ⊢ (((𝜑 ∨ 𝜒) → 𝜓) ↔ ((𝜑 → 𝜓) ∧ (𝜒 → 𝜓))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 ∨ wo 703 |
This theorem was proved from axioms: ax-io 704 |
This theorem is referenced by: olc 706 orc 707 pm3.44 710 pm4.77 794 pm5.53 797 unss 3301 ralunb 3308 intun 3862 intpr 3863 relop 4761 indstr 9552 algcvgblem 12003 sqrt2irr 12116 2sqlem6 13750 bj-inf2vnlem1 14005 |
Copyright terms: Public domain | W3C validator |