ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  jaob GIF version

Theorem jaob 669
Description: Disjunction of antecedents. Compare Theorem *4.77 of [WhiteheadRussell] p. 121. Alias of ax-io 668. (Contributed by NM, 30-May-1994.) (Revised by Mario Carneiro, 31-Jan-2015.)
Assertion
Ref Expression
jaob (((𝜑𝜒) → 𝜓) ↔ ((𝜑𝜓) ∧ (𝜒𝜓)))

Proof of Theorem jaob
StepHypRef Expression
1 ax-io 668 1 (((𝜑𝜒) → 𝜓) ↔ ((𝜑𝜓) ∧ (𝜒𝜓)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wo 667
This theorem was proved from axioms:  ax-io 668
This theorem is referenced by:  olc  670  orc  671  pm3.44  673  pm4.77  751  pm5.53  754  unss  3189  ralunb  3196  intun  3741  intpr  3742  relop  4617  indstr  9180  algcvgblem  11458  sqrt2irr  11568  bj-inf2vnlem1  12573
  Copyright terms: Public domain W3C validator