| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > jaob | GIF version | ||
| Description: Disjunction of antecedents. Compare Theorem *4.77 of [WhiteheadRussell] p. 121. Alias of ax-io 711. (Contributed by NM, 30-May-1994.) (Revised by Mario Carneiro, 31-Jan-2015.) |
| Ref | Expression |
|---|---|
| jaob | ⊢ (((𝜑 ∨ 𝜒) → 𝜓) ↔ ((𝜑 → 𝜓) ∧ (𝜒 → 𝜓))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-io 711 | 1 ⊢ (((𝜑 ∨ 𝜒) → 𝜓) ↔ ((𝜑 → 𝜓) ∧ (𝜒 → 𝜓))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∨ wo 710 |
| This theorem was proved from axioms: ax-io 711 |
| This theorem is referenced by: olc 713 orc 714 pm3.44 717 pm4.77 801 pm5.53 804 unss 3347 ralunb 3354 intun 3916 intpr 3917 relop 4828 indstr 9714 algcvgblem 12371 sqrt2irr 12484 2sqlem6 15597 bj-inf2vnlem1 15906 |
| Copyright terms: Public domain | W3C validator |