Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > jaob | GIF version |
Description: Disjunction of antecedents. Compare Theorem *4.77 of [WhiteheadRussell] p. 121. Alias of ax-io 699. (Contributed by NM, 30-May-1994.) (Revised by Mario Carneiro, 31-Jan-2015.) |
Ref | Expression |
---|---|
jaob | ⊢ (((𝜑 ∨ 𝜒) → 𝜓) ↔ ((𝜑 → 𝜓) ∧ (𝜒 → 𝜓))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-io 699 | 1 ⊢ (((𝜑 ∨ 𝜒) → 𝜓) ↔ ((𝜑 → 𝜓) ∧ (𝜒 → 𝜓))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 ∨ wo 698 |
This theorem was proved from axioms: ax-io 699 |
This theorem is referenced by: olc 701 orc 702 pm3.44 705 pm4.77 789 pm5.53 792 unss 3296 ralunb 3303 intun 3855 intpr 3856 relop 4754 indstr 9531 algcvgblem 11981 sqrt2irr 12094 2sqlem6 13606 bj-inf2vnlem1 13862 |
Copyright terms: Public domain | W3C validator |