| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > rbaibd | GIF version | ||
| Description: Move conjunction outside of biconditional. (Contributed by Mario Carneiro, 11-Sep-2015.) | 
| Ref | Expression | 
|---|---|
| baibd.1 | ⊢ (𝜑 → (𝜓 ↔ (𝜒 ∧ 𝜃))) | 
| Ref | Expression | 
|---|---|
| rbaibd | ⊢ ((𝜑 ∧ 𝜃) → (𝜓 ↔ 𝜒)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | baibd.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ (𝜒 ∧ 𝜃))) | |
| 2 | iba 300 | . . 3 ⊢ (𝜃 → (𝜒 ↔ (𝜒 ∧ 𝜃))) | |
| 3 | 2 | bicomd 141 | . 2 ⊢ (𝜃 → ((𝜒 ∧ 𝜃) ↔ 𝜒)) | 
| 4 | 1, 3 | sylan9bb 462 | 1 ⊢ ((𝜑 ∧ 𝜃) → (𝜓 ↔ 𝜒)) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 | 
| This theorem depends on definitions: df-bi 117 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |