![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sylan9bb | GIF version |
Description: Nested syllogism inference conjoining dissimilar antecedents. (Contributed by NM, 4-Mar-1995.) |
Ref | Expression |
---|---|
sylan9bb.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
sylan9bb.2 | ⊢ (𝜃 → (𝜒 ↔ 𝜏)) |
Ref | Expression |
---|---|
sylan9bb | ⊢ ((𝜑 ∧ 𝜃) → (𝜓 ↔ 𝜏)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylan9bb.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | 1 | adantr 276 | . 2 ⊢ ((𝜑 ∧ 𝜃) → (𝜓 ↔ 𝜒)) |
3 | sylan9bb.2 | . . 3 ⊢ (𝜃 → (𝜒 ↔ 𝜏)) | |
4 | 3 | adantl 277 | . 2 ⊢ ((𝜑 ∧ 𝜃) → (𝜒 ↔ 𝜏)) |
5 | 2, 4 | bitrd 188 | 1 ⊢ ((𝜑 ∧ 𝜃) → (𝜓 ↔ 𝜏)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: sylan9bbr 463 bi2anan9 606 baibd 924 rbaibd 925 syl3an9b 1321 sbcomxyyz 1988 eqeq12 2206 eleq12 2258 sbhypf 2809 ceqsrex2v 2892 sseq12 3204 rexprg 3670 rextpg 3672 breq12 4034 opelopabg 4298 brabg 4299 opelopabgf 4300 opelopab2 4301 ralxpf 4808 rexxpf 4809 feq23 5389 f00 5445 fconstg 5450 f1oeq23 5491 f1o00 5535 f1oiso 5869 riota1a 5893 cbvmpox 5996 caovord 6090 caovord3 6092 rbropapd 6295 genpelvl 7572 genpelvu 7573 nn0ind-raph 9434 elpq 9714 xnn0xadd0 9933 elfz 10080 elfzp12 10165 shftfibg 10964 shftfib 10967 absdvdsb 11952 dvdsabsb 11953 dvdsabseq 11989 islmod 13787 znidom 14145 tgss2 14247 lmbr 14381 xmetec 14605 |
Copyright terms: Public domain | W3C validator |