| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sylan9bb | GIF version | ||
| Description: Nested syllogism inference conjoining dissimilar antecedents. (Contributed by NM, 4-Mar-1995.) |
| Ref | Expression |
|---|---|
| sylan9bb.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| sylan9bb.2 | ⊢ (𝜃 → (𝜒 ↔ 𝜏)) |
| Ref | Expression |
|---|---|
| sylan9bb | ⊢ ((𝜑 ∧ 𝜃) → (𝜓 ↔ 𝜏)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylan9bb.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | 1 | adantr 276 | . 2 ⊢ ((𝜑 ∧ 𝜃) → (𝜓 ↔ 𝜒)) |
| 3 | sylan9bb.2 | . . 3 ⊢ (𝜃 → (𝜒 ↔ 𝜏)) | |
| 4 | 3 | adantl 277 | . 2 ⊢ ((𝜑 ∧ 𝜃) → (𝜒 ↔ 𝜏)) |
| 5 | 2, 4 | bitrd 188 | 1 ⊢ ((𝜑 ∧ 𝜃) → (𝜓 ↔ 𝜏)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: sylan9bbr 463 bi2anan9 608 baibd 928 rbaibd 929 syl3an9b 1344 sbcomxyyz 2023 eqeq12 2242 eleq12 2294 sbhypf 2850 ceqsrex2v 2935 sseq12 3249 rexprg 3718 rextpg 3720 breq12 4087 opelopabg 4355 brabg 4356 opelopabgf 4357 opelopab2 4358 ralxpf 4867 rexxpf 4868 feq23 5458 f00 5516 fconstg 5521 f1oeq23 5562 f1o00 5607 f1oiso 5949 riota1a 5974 cbvmpox 6081 caovord 6176 caovord3 6178 rbropapd 6386 isacnm 7381 genpelvl 7695 genpelvu 7696 nn0ind-raph 9560 elpq 9840 xnn0xadd0 10059 elfz 10206 elfzp12 10291 wrd2ind 11250 shftfibg 11326 shftfib 11329 absdvdsb 12315 dvdsabsb 12316 dvdsabseq 12353 islmod 14249 znidom 14615 tgss2 14747 lmbr 14881 xmetec 15105 2lgslem1a 15761 edgiedgbg 15859 |
| Copyright terms: Public domain | W3C validator |