![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sylan9bb | GIF version |
Description: Nested syllogism inference conjoining dissimilar antecedents. (Contributed by NM, 4-Mar-1995.) |
Ref | Expression |
---|---|
sylan9bb.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
sylan9bb.2 | ⊢ (𝜃 → (𝜒 ↔ 𝜏)) |
Ref | Expression |
---|---|
sylan9bb | ⊢ ((𝜑 ∧ 𝜃) → (𝜓 ↔ 𝜏)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylan9bb.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | 1 | adantr 276 | . 2 ⊢ ((𝜑 ∧ 𝜃) → (𝜓 ↔ 𝜒)) |
3 | sylan9bb.2 | . . 3 ⊢ (𝜃 → (𝜒 ↔ 𝜏)) | |
4 | 3 | adantl 277 | . 2 ⊢ ((𝜑 ∧ 𝜃) → (𝜒 ↔ 𝜏)) |
5 | 2, 4 | bitrd 188 | 1 ⊢ ((𝜑 ∧ 𝜃) → (𝜓 ↔ 𝜏)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: sylan9bbr 463 bi2anan9 606 baibd 924 rbaibd 925 syl3an9b 1321 sbcomxyyz 1988 eqeq12 2206 eleq12 2258 sbhypf 2810 ceqsrex2v 2893 sseq12 3205 rexprg 3671 rextpg 3673 breq12 4035 opelopabg 4299 brabg 4300 opelopabgf 4301 opelopab2 4302 ralxpf 4809 rexxpf 4810 feq23 5390 f00 5446 fconstg 5451 f1oeq23 5492 f1o00 5536 f1oiso 5870 riota1a 5894 cbvmpox 5997 caovord 6092 caovord3 6094 rbropapd 6297 genpelvl 7574 genpelvu 7575 nn0ind-raph 9437 elpq 9717 xnn0xadd0 9936 elfz 10083 elfzp12 10168 shftfibg 10967 shftfib 10970 absdvdsb 11955 dvdsabsb 11956 dvdsabseq 11992 islmod 13790 znidom 14156 tgss2 14258 lmbr 14392 xmetec 14616 2lgslem1a 15245 |
Copyright terms: Public domain | W3C validator |