| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > sylan9bb | GIF version | ||
| Description: Nested syllogism inference conjoining dissimilar antecedents. (Contributed by NM, 4-Mar-1995.) | 
| Ref | Expression | 
|---|---|
| sylan9bb.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | 
| sylan9bb.2 | ⊢ (𝜃 → (𝜒 ↔ 𝜏)) | 
| Ref | Expression | 
|---|---|
| sylan9bb | ⊢ ((𝜑 ∧ 𝜃) → (𝜓 ↔ 𝜏)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | sylan9bb.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | 1 | adantr 276 | . 2 ⊢ ((𝜑 ∧ 𝜃) → (𝜓 ↔ 𝜒)) | 
| 3 | sylan9bb.2 | . . 3 ⊢ (𝜃 → (𝜒 ↔ 𝜏)) | |
| 4 | 3 | adantl 277 | . 2 ⊢ ((𝜑 ∧ 𝜃) → (𝜒 ↔ 𝜏)) | 
| 5 | 2, 4 | bitrd 188 | 1 ⊢ ((𝜑 ∧ 𝜃) → (𝜓 ↔ 𝜏)) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 | 
| This theorem depends on definitions: df-bi 117 | 
| This theorem is referenced by: sylan9bbr 463 bi2anan9 606 baibd 924 rbaibd 925 syl3an9b 1321 sbcomxyyz 1991 eqeq12 2209 eleq12 2261 sbhypf 2813 ceqsrex2v 2896 sseq12 3208 rexprg 3674 rextpg 3676 breq12 4038 opelopabg 4302 brabg 4303 opelopabgf 4304 opelopab2 4305 ralxpf 4812 rexxpf 4813 feq23 5393 f00 5449 fconstg 5454 f1oeq23 5495 f1o00 5539 f1oiso 5873 riota1a 5897 cbvmpox 6000 caovord 6095 caovord3 6097 rbropapd 6300 genpelvl 7579 genpelvu 7580 nn0ind-raph 9443 elpq 9723 xnn0xadd0 9942 elfz 10089 elfzp12 10174 shftfibg 10985 shftfib 10988 absdvdsb 11974 dvdsabsb 11975 dvdsabseq 12012 islmod 13847 znidom 14213 tgss2 14315 lmbr 14449 xmetec 14673 2lgslem1a 15329 | 
| Copyright terms: Public domain | W3C validator |