| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sylan9bb | GIF version | ||
| Description: Nested syllogism inference conjoining dissimilar antecedents. (Contributed by NM, 4-Mar-1995.) |
| Ref | Expression |
|---|---|
| sylan9bb.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| sylan9bb.2 | ⊢ (𝜃 → (𝜒 ↔ 𝜏)) |
| Ref | Expression |
|---|---|
| sylan9bb | ⊢ ((𝜑 ∧ 𝜃) → (𝜓 ↔ 𝜏)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylan9bb.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | 1 | adantr 276 | . 2 ⊢ ((𝜑 ∧ 𝜃) → (𝜓 ↔ 𝜒)) |
| 3 | sylan9bb.2 | . . 3 ⊢ (𝜃 → (𝜒 ↔ 𝜏)) | |
| 4 | 3 | adantl 277 | . 2 ⊢ ((𝜑 ∧ 𝜃) → (𝜒 ↔ 𝜏)) |
| 5 | 2, 4 | bitrd 188 | 1 ⊢ ((𝜑 ∧ 𝜃) → (𝜓 ↔ 𝜏)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: sylan9bbr 463 bi2anan9 606 baibd 924 rbaibd 925 syl3an9b 1322 sbcomxyyz 1999 eqeq12 2217 eleq12 2269 sbhypf 2821 ceqsrex2v 2904 sseq12 3217 rexprg 3684 rextpg 3686 breq12 4048 opelopabg 4312 brabg 4313 opelopabgf 4314 opelopab2 4315 ralxpf 4822 rexxpf 4823 feq23 5405 f00 5461 fconstg 5466 f1oeq23 5507 f1o00 5551 f1oiso 5885 riota1a 5909 cbvmpox 6013 caovord 6108 caovord3 6110 rbropapd 6318 isacnm 7297 genpelvl 7607 genpelvu 7608 nn0ind-raph 9472 elpq 9752 xnn0xadd0 9971 elfz 10118 elfzp12 10203 shftfibg 11050 shftfib 11053 absdvdsb 12039 dvdsabsb 12040 dvdsabseq 12077 islmod 13971 znidom 14337 tgss2 14469 lmbr 14603 xmetec 14827 2lgslem1a 15483 |
| Copyright terms: Public domain | W3C validator |