ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sylan9bb GIF version

Theorem sylan9bb 458
Description: Nested syllogism inference conjoining dissimilar antecedents. (Contributed by NM, 4-Mar-1995.)
Hypotheses
Ref Expression
sylan9bb.1 (𝜑 → (𝜓𝜒))
sylan9bb.2 (𝜃 → (𝜒𝜏))
Assertion
Ref Expression
sylan9bb ((𝜑𝜃) → (𝜓𝜏))

Proof of Theorem sylan9bb
StepHypRef Expression
1 sylan9bb.1 . . 3 (𝜑 → (𝜓𝜒))
21adantr 274 . 2 ((𝜑𝜃) → (𝜓𝜒))
3 sylan9bb.2 . . 3 (𝜃 → (𝜒𝜏))
43adantl 275 . 2 ((𝜑𝜃) → (𝜒𝜏))
52, 4bitrd 187 1 ((𝜑𝜃) → (𝜓𝜏))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  sylan9bbr  459  bi2anan9  596  baibd  913  rbaibd  914  syl3an9b  1300  sbcomxyyz  1960  eqeq12  2178  eleq12  2231  sbhypf  2775  ceqsrex2v  2858  sseq12  3167  rexprg  3628  rextpg  3630  breq12  3987  opelopabg  4246  brabg  4247  opelopab2  4248  ralxpf  4750  rexxpf  4751  feq23  5323  f00  5379  fconstg  5384  f1oeq23  5424  f1o00  5467  f1oiso  5794  riota1a  5817  cbvmpox  5920  caovord  6013  caovord3  6015  rbropapd  6210  genpelvl  7453  genpelvu  7454  nn0ind-raph  9308  elpq  9586  xnn0xadd0  9803  elfz  9950  elfzp12  10034  shftfibg  10762  shftfib  10765  absdvdsb  11749  dvdsabsb  11750  dvdsabseq  11785  tgss2  12729  lmbr  12863  xmetec  13087
  Copyright terms: Public domain W3C validator