| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sylan9bb | GIF version | ||
| Description: Nested syllogism inference conjoining dissimilar antecedents. (Contributed by NM, 4-Mar-1995.) |
| Ref | Expression |
|---|---|
| sylan9bb.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| sylan9bb.2 | ⊢ (𝜃 → (𝜒 ↔ 𝜏)) |
| Ref | Expression |
|---|---|
| sylan9bb | ⊢ ((𝜑 ∧ 𝜃) → (𝜓 ↔ 𝜏)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylan9bb.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | 1 | adantr 276 | . 2 ⊢ ((𝜑 ∧ 𝜃) → (𝜓 ↔ 𝜒)) |
| 3 | sylan9bb.2 | . . 3 ⊢ (𝜃 → (𝜒 ↔ 𝜏)) | |
| 4 | 3 | adantl 277 | . 2 ⊢ ((𝜑 ∧ 𝜃) → (𝜒 ↔ 𝜏)) |
| 5 | 2, 4 | bitrd 188 | 1 ⊢ ((𝜑 ∧ 𝜃) → (𝜓 ↔ 𝜏)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: sylan9bbr 463 bi2anan9 606 baibd 924 rbaibd 925 syl3an9b 1321 sbcomxyyz 1991 eqeq12 2209 eleq12 2261 sbhypf 2813 ceqsrex2v 2896 sseq12 3209 rexprg 3675 rextpg 3677 breq12 4039 opelopabg 4303 brabg 4304 opelopabgf 4305 opelopab2 4306 ralxpf 4813 rexxpf 4814 feq23 5396 f00 5452 fconstg 5457 f1oeq23 5498 f1o00 5542 f1oiso 5876 riota1a 5900 cbvmpox 6004 caovord 6099 caovord3 6101 rbropapd 6309 isacnm 7288 genpelvl 7598 genpelvu 7599 nn0ind-raph 9462 elpq 9742 xnn0xadd0 9961 elfz 10108 elfzp12 10193 shftfibg 11004 shftfib 11007 absdvdsb 11993 dvdsabsb 11994 dvdsabseq 12031 islmod 13925 znidom 14291 tgss2 14423 lmbr 14557 xmetec 14781 2lgslem1a 15437 |
| Copyright terms: Public domain | W3C validator |