| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sylan9bb | GIF version | ||
| Description: Nested syllogism inference conjoining dissimilar antecedents. (Contributed by NM, 4-Mar-1995.) |
| Ref | Expression |
|---|---|
| sylan9bb.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| sylan9bb.2 | ⊢ (𝜃 → (𝜒 ↔ 𝜏)) |
| Ref | Expression |
|---|---|
| sylan9bb | ⊢ ((𝜑 ∧ 𝜃) → (𝜓 ↔ 𝜏)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylan9bb.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | 1 | adantr 276 | . 2 ⊢ ((𝜑 ∧ 𝜃) → (𝜓 ↔ 𝜒)) |
| 3 | sylan9bb.2 | . . 3 ⊢ (𝜃 → (𝜒 ↔ 𝜏)) | |
| 4 | 3 | adantl 277 | . 2 ⊢ ((𝜑 ∧ 𝜃) → (𝜒 ↔ 𝜏)) |
| 5 | 2, 4 | bitrd 188 | 1 ⊢ ((𝜑 ∧ 𝜃) → (𝜓 ↔ 𝜏)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: sylan9bbr 463 bi2anan9 606 baibd 925 rbaibd 926 syl3an9b 1323 sbcomxyyz 2001 eqeq12 2219 eleq12 2271 sbhypf 2824 ceqsrex2v 2909 sseq12 3222 rexprg 3690 rextpg 3692 breq12 4056 opelopabg 4322 brabg 4323 opelopabgf 4324 opelopab2 4325 ralxpf 4832 rexxpf 4833 feq23 5421 f00 5479 fconstg 5484 f1oeq23 5525 f1o00 5570 f1oiso 5908 riota1a 5932 cbvmpox 6036 caovord 6131 caovord3 6133 rbropapd 6341 isacnm 7331 genpelvl 7645 genpelvu 7646 nn0ind-raph 9510 elpq 9790 xnn0xadd0 10009 elfz 10156 elfzp12 10241 wrd2ind 11199 shftfibg 11206 shftfib 11209 absdvdsb 12195 dvdsabsb 12196 dvdsabseq 12233 islmod 14128 znidom 14494 tgss2 14626 lmbr 14760 xmetec 14984 2lgslem1a 15640 edgiedgbg 15736 |
| Copyright terms: Public domain | W3C validator |