Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sylan9bb | GIF version |
Description: Nested syllogism inference conjoining dissimilar antecedents. (Contributed by NM, 4-Mar-1995.) |
Ref | Expression |
---|---|
sylan9bb.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
sylan9bb.2 | ⊢ (𝜃 → (𝜒 ↔ 𝜏)) |
Ref | Expression |
---|---|
sylan9bb | ⊢ ((𝜑 ∧ 𝜃) → (𝜓 ↔ 𝜏)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylan9bb.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | 1 | adantr 274 | . 2 ⊢ ((𝜑 ∧ 𝜃) → (𝜓 ↔ 𝜒)) |
3 | sylan9bb.2 | . . 3 ⊢ (𝜃 → (𝜒 ↔ 𝜏)) | |
4 | 3 | adantl 275 | . 2 ⊢ ((𝜑 ∧ 𝜃) → (𝜒 ↔ 𝜏)) |
5 | 2, 4 | bitrd 187 | 1 ⊢ ((𝜑 ∧ 𝜃) → (𝜓 ↔ 𝜏)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: sylan9bbr 459 bi2anan9 596 baibd 913 rbaibd 914 syl3an9b 1300 sbcomxyyz 1960 eqeq12 2178 eleq12 2231 sbhypf 2775 ceqsrex2v 2858 sseq12 3167 rexprg 3628 rextpg 3630 breq12 3987 opelopabg 4246 brabg 4247 opelopab2 4248 ralxpf 4750 rexxpf 4751 feq23 5323 f00 5379 fconstg 5384 f1oeq23 5424 f1o00 5467 f1oiso 5794 riota1a 5817 cbvmpox 5920 caovord 6013 caovord3 6015 rbropapd 6210 genpelvl 7453 genpelvu 7454 nn0ind-raph 9308 elpq 9586 xnn0xadd0 9803 elfz 9950 elfzp12 10034 shftfibg 10762 shftfib 10765 absdvdsb 11749 dvdsabsb 11750 dvdsabseq 11785 tgss2 12729 lmbr 12863 xmetec 13087 |
Copyright terms: Public domain | W3C validator |