ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  baibd GIF version

Theorem baibd 928
Description: Move conjunction outside of biconditional. (Contributed by Mario Carneiro, 11-Sep-2015.)
Hypothesis
Ref Expression
baibd.1 (𝜑 → (𝜓 ↔ (𝜒𝜃)))
Assertion
Ref Expression
baibd ((𝜑𝜒) → (𝜓𝜃))

Proof of Theorem baibd
StepHypRef Expression
1 baibd.1 . 2 (𝜑 → (𝜓 ↔ (𝜒𝜃)))
2 ibar 301 . . 3 (𝜒 → (𝜃 ↔ (𝜒𝜃)))
32bicomd 141 . 2 (𝜒 → ((𝜒𝜃) ↔ 𝜃))
41, 3sylan9bb 462 1 ((𝜑𝜒) → (𝜓𝜃))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  pw2f1odclem  6991  eluz  9731  elicc4  10132  s111  11159  divalgmodcl  12434  eqglact  13757  eqgid  13758  iscrng2  13973  issubrg3  14205  iscld2  14772  cncnp2m  14899  cnnei  14900  reopnap  15214  cnlimc  15340  2omap  16318  pw1map  16320
  Copyright terms: Public domain W3C validator