ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  baibd GIF version

Theorem baibd 909
Description: Move conjunction outside of biconditional. (Contributed by Mario Carneiro, 11-Sep-2015.)
Hypothesis
Ref Expression
baibd.1 (𝜑 → (𝜓 ↔ (𝜒𝜃)))
Assertion
Ref Expression
baibd ((𝜑𝜒) → (𝜓𝜃))

Proof of Theorem baibd
StepHypRef Expression
1 baibd.1 . 2 (𝜑 → (𝜓 ↔ (𝜒𝜃)))
2 ibar 299 . . 3 (𝜒 → (𝜃 ↔ (𝜒𝜃)))
32bicomd 140 . 2 (𝜒 → ((𝜒𝜃) ↔ 𝜃))
41, 3sylan9bb 458 1 ((𝜑𝜒) → (𝜓𝜃))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  eluz  9431  elicc4  9822  divalgmodcl  11792  iscld2  12443  cncnp2m  12570  cnnei  12571  reopnap  12877  cnlimc  12980
  Copyright terms: Public domain W3C validator