ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  baibd GIF version

Theorem baibd 925
Description: Move conjunction outside of biconditional. (Contributed by Mario Carneiro, 11-Sep-2015.)
Hypothesis
Ref Expression
baibd.1 (𝜑 → (𝜓 ↔ (𝜒𝜃)))
Assertion
Ref Expression
baibd ((𝜑𝜒) → (𝜓𝜃))

Proof of Theorem baibd
StepHypRef Expression
1 baibd.1 . 2 (𝜑 → (𝜓 ↔ (𝜒𝜃)))
2 ibar 301 . . 3 (𝜒 → (𝜃 ↔ (𝜒𝜃)))
32bicomd 141 . 2 (𝜒 → ((𝜒𝜃) ↔ 𝜃))
41, 3sylan9bb 462 1 ((𝜑𝜒) → (𝜓𝜃))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  pw2f1odclem  6946  eluz  9681  elicc4  10082  s111  11108  divalgmodcl  12314  eqglact  13636  eqgid  13637  iscrng2  13852  issubrg3  14084  iscld2  14651  cncnp2m  14778  cnnei  14779  reopnap  15093  cnlimc  15219  2omap  16071  pw1map  16073
  Copyright terms: Public domain W3C validator