| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rnlem | GIF version | ||
| Description: Lemma used in construction of real numbers. (Contributed by NM, 4-Sep-1995.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
| Ref | Expression |
|---|---|
| rnlem | ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) ↔ (((𝜑 ∧ 𝜒) ∧ (𝜓 ∧ 𝜃)) ∧ ((𝜑 ∧ 𝜃) ∧ (𝜓 ∧ 𝜒)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | an4 586 | . . . 4 ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) ↔ ((𝜑 ∧ 𝜒) ∧ (𝜓 ∧ 𝜃))) | |
| 2 | 1 | biimpi 120 | . . 3 ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) → ((𝜑 ∧ 𝜒) ∧ (𝜓 ∧ 𝜃))) |
| 3 | an42 587 | . . . 4 ⊢ (((𝜑 ∧ 𝜃) ∧ (𝜓 ∧ 𝜒)) ↔ ((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃))) | |
| 4 | 3 | biimpri 133 | . . 3 ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) → ((𝜑 ∧ 𝜃) ∧ (𝜓 ∧ 𝜒))) |
| 5 | 2, 4 | jca 306 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) → (((𝜑 ∧ 𝜒) ∧ (𝜓 ∧ 𝜃)) ∧ ((𝜑 ∧ 𝜃) ∧ (𝜓 ∧ 𝜒)))) |
| 6 | 3 | biimpi 120 | . . 3 ⊢ (((𝜑 ∧ 𝜃) ∧ (𝜓 ∧ 𝜒)) → ((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃))) |
| 7 | 6 | adantl 277 | . 2 ⊢ ((((𝜑 ∧ 𝜒) ∧ (𝜓 ∧ 𝜃)) ∧ ((𝜑 ∧ 𝜃) ∧ (𝜓 ∧ 𝜒))) → ((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃))) |
| 8 | 5, 7 | impbii 126 | 1 ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) ↔ (((𝜑 ∧ 𝜒) ∧ (𝜓 ∧ 𝜃)) ∧ ((𝜑 ∧ 𝜃) ∧ (𝜓 ∧ 𝜒)))) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |