ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rnlem GIF version

Theorem rnlem 966
Description: Lemma used in construction of real numbers. (Contributed by NM, 4-Sep-1995.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
Assertion
Ref Expression
rnlem (((𝜑𝜓) ∧ (𝜒𝜃)) ↔ (((𝜑𝜒) ∧ (𝜓𝜃)) ∧ ((𝜑𝜃) ∧ (𝜓𝜒))))

Proof of Theorem rnlem
StepHypRef Expression
1 an4 576 . . . 4 (((𝜑𝜓) ∧ (𝜒𝜃)) ↔ ((𝜑𝜒) ∧ (𝜓𝜃)))
21biimpi 119 . . 3 (((𝜑𝜓) ∧ (𝜒𝜃)) → ((𝜑𝜒) ∧ (𝜓𝜃)))
3 an42 577 . . . 4 (((𝜑𝜃) ∧ (𝜓𝜒)) ↔ ((𝜑𝜓) ∧ (𝜒𝜃)))
43biimpri 132 . . 3 (((𝜑𝜓) ∧ (𝜒𝜃)) → ((𝜑𝜃) ∧ (𝜓𝜒)))
52, 4jca 304 . 2 (((𝜑𝜓) ∧ (𝜒𝜃)) → (((𝜑𝜒) ∧ (𝜓𝜃)) ∧ ((𝜑𝜃) ∧ (𝜓𝜒))))
63biimpi 119 . . 3 (((𝜑𝜃) ∧ (𝜓𝜒)) → ((𝜑𝜓) ∧ (𝜒𝜃)))
76adantl 275 . 2 ((((𝜑𝜒) ∧ (𝜓𝜃)) ∧ ((𝜑𝜃) ∧ (𝜓𝜒))) → ((𝜑𝜓) ∧ (𝜒𝜃)))
85, 7impbii 125 1 (((𝜑𝜓) ∧ (𝜒𝜃)) ↔ (((𝜑𝜒) ∧ (𝜓𝜃)) ∧ ((𝜑𝜃) ∧ (𝜓𝜒))))
Colors of variables: wff set class
Syntax hints:  wa 103  wb 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107
This theorem depends on definitions:  df-bi 116
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator