Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > rnlem | GIF version |
Description: Lemma used in construction of real numbers. (Contributed by NM, 4-Sep-1995.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
Ref | Expression |
---|---|
rnlem | ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) ↔ (((𝜑 ∧ 𝜒) ∧ (𝜓 ∧ 𝜃)) ∧ ((𝜑 ∧ 𝜃) ∧ (𝜓 ∧ 𝜒)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | an4 581 | . . . 4 ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) ↔ ((𝜑 ∧ 𝜒) ∧ (𝜓 ∧ 𝜃))) | |
2 | 1 | biimpi 119 | . . 3 ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) → ((𝜑 ∧ 𝜒) ∧ (𝜓 ∧ 𝜃))) |
3 | an42 582 | . . . 4 ⊢ (((𝜑 ∧ 𝜃) ∧ (𝜓 ∧ 𝜒)) ↔ ((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃))) | |
4 | 3 | biimpri 132 | . . 3 ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) → ((𝜑 ∧ 𝜃) ∧ (𝜓 ∧ 𝜒))) |
5 | 2, 4 | jca 304 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) → (((𝜑 ∧ 𝜒) ∧ (𝜓 ∧ 𝜃)) ∧ ((𝜑 ∧ 𝜃) ∧ (𝜓 ∧ 𝜒)))) |
6 | 3 | biimpi 119 | . . 3 ⊢ (((𝜑 ∧ 𝜃) ∧ (𝜓 ∧ 𝜒)) → ((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃))) |
7 | 6 | adantl 275 | . 2 ⊢ ((((𝜑 ∧ 𝜒) ∧ (𝜓 ∧ 𝜃)) ∧ ((𝜑 ∧ 𝜃) ∧ (𝜓 ∧ 𝜒))) → ((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃))) |
8 | 5, 7 | impbii 125 | 1 ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) ↔ (((𝜑 ∧ 𝜒) ∧ (𝜓 ∧ 𝜃)) ∧ ((𝜑 ∧ 𝜃) ∧ (𝜓 ∧ 𝜒)))) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 ↔ wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |