Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > an42 | GIF version |
Description: Rearrangement of 4 conjuncts. (Contributed by NM, 7-Feb-1996.) |
Ref | Expression |
---|---|
an42 | ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) ↔ ((𝜑 ∧ 𝜒) ∧ (𝜃 ∧ 𝜓))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | an4 576 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) ↔ ((𝜑 ∧ 𝜒) ∧ (𝜓 ∧ 𝜃))) | |
2 | ancom 264 | . . 3 ⊢ ((𝜓 ∧ 𝜃) ↔ (𝜃 ∧ 𝜓)) | |
3 | 2 | anbi2i 453 | . 2 ⊢ (((𝜑 ∧ 𝜒) ∧ (𝜓 ∧ 𝜃)) ↔ ((𝜑 ∧ 𝜒) ∧ (𝜃 ∧ 𝜓))) |
4 | 1, 3 | bitri 183 | 1 ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) ↔ ((𝜑 ∧ 𝜒) ∧ (𝜃 ∧ 𝜓))) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 ↔ wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: rnlem 966 supmoti 6958 distrnqg 7328 distrnq0 7400 prcdnql 7425 prcunqu 7426 |
Copyright terms: Public domain | W3C validator |