ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  an42 GIF version

Theorem an42 577
Description: Rearrangement of 4 conjuncts. (Contributed by NM, 7-Feb-1996.)
Assertion
Ref Expression
an42 (((𝜑𝜓) ∧ (𝜒𝜃)) ↔ ((𝜑𝜒) ∧ (𝜃𝜓)))

Proof of Theorem an42
StepHypRef Expression
1 an4 576 . 2 (((𝜑𝜓) ∧ (𝜒𝜃)) ↔ ((𝜑𝜒) ∧ (𝜓𝜃)))
2 ancom 264 . . 3 ((𝜓𝜃) ↔ (𝜃𝜓))
32anbi2i 453 . 2 (((𝜑𝜒) ∧ (𝜓𝜃)) ↔ ((𝜑𝜒) ∧ (𝜃𝜓)))
41, 3bitri 183 1 (((𝜑𝜓) ∧ (𝜒𝜃)) ↔ ((𝜑𝜒) ∧ (𝜃𝜓)))
Colors of variables: wff set class
Syntax hints:  wa 103  wb 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  rnlem  961  supmoti  6937  distrnqg  7307  distrnq0  7379  prcdnql  7404  prcunqu  7405
  Copyright terms: Public domain W3C validator