ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  an4 GIF version

Theorem an4 576
Description: Rearrangement of 4 conjuncts. (Contributed by NM, 10-Jul-1994.)
Assertion
Ref Expression
an4 (((𝜑𝜓) ∧ (𝜒𝜃)) ↔ ((𝜑𝜒) ∧ (𝜓𝜃)))

Proof of Theorem an4
StepHypRef Expression
1 an12 551 . . 3 ((𝜓 ∧ (𝜒𝜃)) ↔ (𝜒 ∧ (𝜓𝜃)))
21anbi2i 453 . 2 ((𝜑 ∧ (𝜓 ∧ (𝜒𝜃))) ↔ (𝜑 ∧ (𝜒 ∧ (𝜓𝜃))))
3 anass 399 . 2 (((𝜑𝜓) ∧ (𝜒𝜃)) ↔ (𝜑 ∧ (𝜓 ∧ (𝜒𝜃))))
4 anass 399 . 2 (((𝜑𝜒) ∧ (𝜓𝜃)) ↔ (𝜑 ∧ (𝜒 ∧ (𝜓𝜃))))
52, 3, 43bitr4i 211 1 (((𝜑𝜓) ∧ (𝜒𝜃)) ↔ ((𝜑𝜒) ∧ (𝜓𝜃)))
Colors of variables: wff set class
Syntax hints:  wa 103  wb 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  an42  577  an4s  578  anandi  580  anandir  581  rnlem  961  an6  1300  2eu4  2096  reean  2622  reu2  2896  rmo4  2901  rmo3f  2905  rmo3  3024  inxp  4713  xp11m  5017  fununi  5231  fun  5335  resoprab2  5908  xporderlem  6168  poxp  6169  th3qlem1  6571  enq0enq  7330  enq0tr  7333  genpdisj  7422  cju  8811  elfzo2  10027  iooinsup  11151  summodc  11257  prodmodc  11452  txbasval  12614  txcnp  12618  txlm  12626
  Copyright terms: Public domain W3C validator