| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > an4 | GIF version | ||
| Description: Rearrangement of 4 conjuncts. (Contributed by NM, 10-Jul-1994.) |
| Ref | Expression |
|---|---|
| an4 | ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) ↔ ((𝜑 ∧ 𝜒) ∧ (𝜓 ∧ 𝜃))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | an12 561 | . . 3 ⊢ ((𝜓 ∧ (𝜒 ∧ 𝜃)) ↔ (𝜒 ∧ (𝜓 ∧ 𝜃))) | |
| 2 | 1 | anbi2i 457 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∧ (𝜒 ∧ 𝜃))) ↔ (𝜑 ∧ (𝜒 ∧ (𝜓 ∧ 𝜃)))) |
| 3 | anass 401 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) ↔ (𝜑 ∧ (𝜓 ∧ (𝜒 ∧ 𝜃)))) | |
| 4 | anass 401 | . 2 ⊢ (((𝜑 ∧ 𝜒) ∧ (𝜓 ∧ 𝜃)) ↔ (𝜑 ∧ (𝜒 ∧ (𝜓 ∧ 𝜃)))) | |
| 5 | 2, 3, 4 | 3bitr4i 212 | 1 ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) ↔ ((𝜑 ∧ 𝜒) ∧ (𝜓 ∧ 𝜃))) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: an42 587 an4s 588 anandi 590 anandir 591 rnlem 978 an6 1333 2eu4 2146 reean 2674 reu2 2960 rmo4 2965 rmo3f 2969 rmo3 3089 inxp 4811 xp11m 5120 fununi 5341 fun 5447 resoprab2 6041 xporderlem 6316 poxp 6317 th3qlem1 6723 enq0enq 7543 enq0tr 7546 genpdisj 7635 cju 9033 elfzo2 10271 iooinsup 11530 summodc 11636 prodmodc 11831 issubmd 13248 dvdsrtr 13805 domnmuln0 13977 txbasval 14681 txcnp 14685 txlm 14693 |
| Copyright terms: Public domain | W3C validator |