![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > an4 | GIF version |
Description: Rearrangement of 4 conjuncts. (Contributed by NM, 10-Jul-1994.) |
Ref | Expression |
---|---|
an4 | ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) ↔ ((𝜑 ∧ 𝜒) ∧ (𝜓 ∧ 𝜃))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | an12 561 | . . 3 ⊢ ((𝜓 ∧ (𝜒 ∧ 𝜃)) ↔ (𝜒 ∧ (𝜓 ∧ 𝜃))) | |
2 | 1 | anbi2i 457 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∧ (𝜒 ∧ 𝜃))) ↔ (𝜑 ∧ (𝜒 ∧ (𝜓 ∧ 𝜃)))) |
3 | anass 401 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) ↔ (𝜑 ∧ (𝜓 ∧ (𝜒 ∧ 𝜃)))) | |
4 | anass 401 | . 2 ⊢ (((𝜑 ∧ 𝜒) ∧ (𝜓 ∧ 𝜃)) ↔ (𝜑 ∧ (𝜒 ∧ (𝜓 ∧ 𝜃)))) | |
5 | 2, 3, 4 | 3bitr4i 212 | 1 ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) ↔ ((𝜑 ∧ 𝜒) ∧ (𝜓 ∧ 𝜃))) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 ↔ wb 105 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: an42 587 an4s 588 anandi 590 anandir 591 rnlem 978 an6 1332 2eu4 2135 reean 2663 reu2 2948 rmo4 2953 rmo3f 2957 rmo3 3077 inxp 4796 xp11m 5104 fununi 5322 fun 5426 resoprab2 6015 xporderlem 6284 poxp 6285 th3qlem1 6691 enq0enq 7491 enq0tr 7494 genpdisj 7583 cju 8980 elfzo2 10216 iooinsup 11420 summodc 11526 prodmodc 11721 issubmd 13046 dvdsrtr 13597 domnmuln0 13769 txbasval 14435 txcnp 14439 txlm 14447 |
Copyright terms: Public domain | W3C validator |