| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > an4 | GIF version | ||
| Description: Rearrangement of 4 conjuncts. (Contributed by NM, 10-Jul-1994.) |
| Ref | Expression |
|---|---|
| an4 | ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) ↔ ((𝜑 ∧ 𝜒) ∧ (𝜓 ∧ 𝜃))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | an12 561 | . . 3 ⊢ ((𝜓 ∧ (𝜒 ∧ 𝜃)) ↔ (𝜒 ∧ (𝜓 ∧ 𝜃))) | |
| 2 | 1 | anbi2i 457 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∧ (𝜒 ∧ 𝜃))) ↔ (𝜑 ∧ (𝜒 ∧ (𝜓 ∧ 𝜃)))) |
| 3 | anass 401 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) ↔ (𝜑 ∧ (𝜓 ∧ (𝜒 ∧ 𝜃)))) | |
| 4 | anass 401 | . 2 ⊢ (((𝜑 ∧ 𝜒) ∧ (𝜓 ∧ 𝜃)) ↔ (𝜑 ∧ (𝜒 ∧ (𝜓 ∧ 𝜃)))) | |
| 5 | 2, 3, 4 | 3bitr4i 212 | 1 ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) ↔ ((𝜑 ∧ 𝜒) ∧ (𝜓 ∧ 𝜃))) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: an42 587 an4s 588 anandi 590 anandir 591 rnlem 978 an6 1332 2eu4 2138 reean 2666 reu2 2952 rmo4 2957 rmo3f 2961 rmo3 3081 inxp 4801 xp11m 5109 fununi 5327 fun 5433 resoprab2 6023 xporderlem 6298 poxp 6299 th3qlem1 6705 enq0enq 7517 enq0tr 7520 genpdisj 7609 cju 9007 elfzo2 10244 iooinsup 11461 summodc 11567 prodmodc 11762 issubmd 13178 dvdsrtr 13735 domnmuln0 13907 txbasval 14611 txcnp 14615 txlm 14623 |
| Copyright terms: Public domain | W3C validator |