Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > an4 | GIF version |
Description: Rearrangement of 4 conjuncts. (Contributed by NM, 10-Jul-1994.) |
Ref | Expression |
---|---|
an4 | ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) ↔ ((𝜑 ∧ 𝜒) ∧ (𝜓 ∧ 𝜃))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | an12 551 | . . 3 ⊢ ((𝜓 ∧ (𝜒 ∧ 𝜃)) ↔ (𝜒 ∧ (𝜓 ∧ 𝜃))) | |
2 | 1 | anbi2i 453 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∧ (𝜒 ∧ 𝜃))) ↔ (𝜑 ∧ (𝜒 ∧ (𝜓 ∧ 𝜃)))) |
3 | anass 399 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) ↔ (𝜑 ∧ (𝜓 ∧ (𝜒 ∧ 𝜃)))) | |
4 | anass 399 | . 2 ⊢ (((𝜑 ∧ 𝜒) ∧ (𝜓 ∧ 𝜃)) ↔ (𝜑 ∧ (𝜒 ∧ (𝜓 ∧ 𝜃)))) | |
5 | 2, 3, 4 | 3bitr4i 211 | 1 ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) ↔ ((𝜑 ∧ 𝜒) ∧ (𝜓 ∧ 𝜃))) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 ↔ wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: an42 577 an4s 578 anandi 580 anandir 581 rnlem 961 an6 1300 2eu4 2096 reean 2622 reu2 2896 rmo4 2901 rmo3f 2905 rmo3 3024 inxp 4713 xp11m 5017 fununi 5231 fun 5335 resoprab2 5908 xporderlem 6168 poxp 6169 th3qlem1 6571 enq0enq 7330 enq0tr 7333 genpdisj 7422 cju 8811 elfzo2 10027 iooinsup 11151 summodc 11257 prodmodc 11452 txbasval 12614 txcnp 12618 txlm 12626 |
Copyright terms: Public domain | W3C validator |