ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rspa GIF version

Theorem rspa 2518
Description: Restricted specialization. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Assertion
Ref Expression
rspa ((∀𝑥𝐴 𝜑𝑥𝐴) → 𝜑)

Proof of Theorem rspa
StepHypRef Expression
1 rsp 2517 . 2 (∀𝑥𝐴 𝜑 → (𝑥𝐴𝜑))
21imp 123 1 ((∀𝑥𝐴 𝜑𝑥𝐴) → 𝜑)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wcel 2141  wral 2448
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-4 1503
This theorem depends on definitions:  df-bi 116  df-ral 2453
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator