| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rspe | GIF version | ||
| Description: Restricted specialization. (Contributed by NM, 12-Oct-1999.) |
| Ref | Expression |
|---|---|
| rspe | ⊢ ((𝑥 ∈ 𝐴 ∧ 𝜑) → ∃𝑥 ∈ 𝐴 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 19.8a 1636 | . 2 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝜑) → ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
| 2 | df-rex 2514 | . 2 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
| 3 | 1, 2 | sylibr 134 | 1 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝜑) → ∃𝑥 ∈ 𝐴 𝜑) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∃wex 1538 ∈ wcel 2200 ∃wrex 2509 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-4 1556 |
| This theorem depends on definitions: df-bi 117 df-rex 2514 |
| This theorem is referenced by: rsp2e 2581 ssiun2 4008 tfrlem9 6471 tfrlemibxssdm 6479 tfr1onlembxssdm 6495 tfrcllembxssdm 6508 findcard2 7059 findcard2s 7060 prarloclemup 7690 prmuloc2 7762 ltaddpr 7792 aptiprlemu 7835 cauappcvgprlemopl 7841 cauappcvgprlemopu 7843 cauappcvgprlem2 7855 caucvgprlemopl 7864 caucvgprlemopu 7866 caucvgprlem2 7875 caucvgprprlem2 7905 suplocexprlemrl 7912 suplocexprlemru 7914 suplocexprlemlub 7919 |
| Copyright terms: Public domain | W3C validator |