Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > rspe | GIF version |
Description: Restricted specialization. (Contributed by NM, 12-Oct-1999.) |
Ref | Expression |
---|---|
rspe | ⊢ ((𝑥 ∈ 𝐴 ∧ 𝜑) → ∃𝑥 ∈ 𝐴 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 19.8a 1578 | . 2 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝜑) → ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
2 | df-rex 2450 | . 2 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
3 | 1, 2 | sylibr 133 | 1 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝜑) → ∃𝑥 ∈ 𝐴 𝜑) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∃wex 1480 ∈ wcel 2136 ∃wrex 2445 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-4 1498 |
This theorem depends on definitions: df-bi 116 df-rex 2450 |
This theorem is referenced by: rsp2e 2517 ssiun2 3909 tfrlem9 6287 tfrlemibxssdm 6295 tfr1onlembxssdm 6311 tfrcllembxssdm 6324 findcard2 6855 findcard2s 6856 prarloclemup 7436 prmuloc2 7508 ltaddpr 7538 aptiprlemu 7581 cauappcvgprlemopl 7587 cauappcvgprlemopu 7589 cauappcvgprlem2 7601 caucvgprlemopl 7610 caucvgprlemopu 7612 caucvgprlem2 7621 caucvgprprlem2 7651 suplocexprlemrl 7658 suplocexprlemru 7660 suplocexprlemlub 7665 |
Copyright terms: Public domain | W3C validator |