![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > rspe | GIF version |
Description: Restricted specialization. (Contributed by NM, 12-Oct-1999.) |
Ref | Expression |
---|---|
rspe | ⊢ ((𝑥 ∈ 𝐴 ∧ 𝜑) → ∃𝑥 ∈ 𝐴 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 19.8a 1601 | . 2 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝜑) → ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
2 | df-rex 2478 | . 2 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
3 | 1, 2 | sylibr 134 | 1 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝜑) → ∃𝑥 ∈ 𝐴 𝜑) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∃wex 1503 ∈ wcel 2164 ∃wrex 2473 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-4 1521 |
This theorem depends on definitions: df-bi 117 df-rex 2478 |
This theorem is referenced by: rsp2e 2545 ssiun2 3955 tfrlem9 6372 tfrlemibxssdm 6380 tfr1onlembxssdm 6396 tfrcllembxssdm 6409 findcard2 6945 findcard2s 6946 prarloclemup 7555 prmuloc2 7627 ltaddpr 7657 aptiprlemu 7700 cauappcvgprlemopl 7706 cauappcvgprlemopu 7708 cauappcvgprlem2 7720 caucvgprlemopl 7729 caucvgprlemopu 7731 caucvgprlem2 7740 caucvgprprlem2 7770 suplocexprlemrl 7777 suplocexprlemru 7779 suplocexprlemlub 7784 |
Copyright terms: Public domain | W3C validator |