Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > rspe | GIF version |
Description: Restricted specialization. (Contributed by NM, 12-Oct-1999.) |
Ref | Expression |
---|---|
rspe | ⊢ ((𝑥 ∈ 𝐴 ∧ 𝜑) → ∃𝑥 ∈ 𝐴 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 19.8a 1583 | . 2 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝜑) → ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
2 | df-rex 2454 | . 2 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
3 | 1, 2 | sylibr 133 | 1 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝜑) → ∃𝑥 ∈ 𝐴 𝜑) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∃wex 1485 ∈ wcel 2141 ∃wrex 2449 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-4 1503 |
This theorem depends on definitions: df-bi 116 df-rex 2454 |
This theorem is referenced by: rsp2e 2521 ssiun2 3916 tfrlem9 6298 tfrlemibxssdm 6306 tfr1onlembxssdm 6322 tfrcllembxssdm 6335 findcard2 6867 findcard2s 6868 prarloclemup 7457 prmuloc2 7529 ltaddpr 7559 aptiprlemu 7602 cauappcvgprlemopl 7608 cauappcvgprlemopu 7610 cauappcvgprlem2 7622 caucvgprlemopl 7631 caucvgprlemopu 7633 caucvgprlem2 7642 caucvgprprlem2 7672 suplocexprlemrl 7679 suplocexprlemru 7681 suplocexprlemlub 7686 |
Copyright terms: Public domain | W3C validator |