ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rspe GIF version

Theorem rspe 2519
Description: Restricted specialization. (Contributed by NM, 12-Oct-1999.)
Assertion
Ref Expression
rspe ((𝑥𝐴𝜑) → ∃𝑥𝐴 𝜑)

Proof of Theorem rspe
StepHypRef Expression
1 19.8a 1583 . 2 ((𝑥𝐴𝜑) → ∃𝑥(𝑥𝐴𝜑))
2 df-rex 2454 . 2 (∃𝑥𝐴 𝜑 ↔ ∃𝑥(𝑥𝐴𝜑))
31, 2sylibr 133 1 ((𝑥𝐴𝜑) → ∃𝑥𝐴 𝜑)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wex 1485  wcel 2141  wrex 2449
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-4 1503
This theorem depends on definitions:  df-bi 116  df-rex 2454
This theorem is referenced by:  rsp2e  2521  ssiun2  3916  tfrlem9  6298  tfrlemibxssdm  6306  tfr1onlembxssdm  6322  tfrcllembxssdm  6335  findcard2  6867  findcard2s  6868  prarloclemup  7457  prmuloc2  7529  ltaddpr  7559  aptiprlemu  7602  cauappcvgprlemopl  7608  cauappcvgprlemopu  7610  cauappcvgprlem2  7622  caucvgprlemopl  7631  caucvgprlemopu  7633  caucvgprlem2  7642  caucvgprprlem2  7672  suplocexprlemrl  7679  suplocexprlemru  7681  suplocexprlemlub  7686
  Copyright terms: Public domain W3C validator