| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rspe | GIF version | ||
| Description: Restricted specialization. (Contributed by NM, 12-Oct-1999.) |
| Ref | Expression |
|---|---|
| rspe | ⊢ ((𝑥 ∈ 𝐴 ∧ 𝜑) → ∃𝑥 ∈ 𝐴 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 19.8a 1616 | . 2 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝜑) → ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
| 2 | df-rex 2494 | . 2 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
| 3 | 1, 2 | sylibr 134 | 1 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝜑) → ∃𝑥 ∈ 𝐴 𝜑) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∃wex 1518 ∈ wcel 2180 ∃wrex 2489 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-4 1536 |
| This theorem depends on definitions: df-bi 117 df-rex 2494 |
| This theorem is referenced by: rsp2e 2561 ssiun2 3987 tfrlem9 6435 tfrlemibxssdm 6443 tfr1onlembxssdm 6459 tfrcllembxssdm 6472 findcard2 7019 findcard2s 7020 prarloclemup 7650 prmuloc2 7722 ltaddpr 7752 aptiprlemu 7795 cauappcvgprlemopl 7801 cauappcvgprlemopu 7803 cauappcvgprlem2 7815 caucvgprlemopl 7824 caucvgprlemopu 7826 caucvgprlem2 7835 caucvgprprlem2 7865 suplocexprlemrl 7872 suplocexprlemru 7874 suplocexprlemlub 7879 |
| Copyright terms: Public domain | W3C validator |