ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rspe GIF version

Theorem rspe 2515
Description: Restricted specialization. (Contributed by NM, 12-Oct-1999.)
Assertion
Ref Expression
rspe ((𝑥𝐴𝜑) → ∃𝑥𝐴 𝜑)

Proof of Theorem rspe
StepHypRef Expression
1 19.8a 1578 . 2 ((𝑥𝐴𝜑) → ∃𝑥(𝑥𝐴𝜑))
2 df-rex 2450 . 2 (∃𝑥𝐴 𝜑 ↔ ∃𝑥(𝑥𝐴𝜑))
31, 2sylibr 133 1 ((𝑥𝐴𝜑) → ∃𝑥𝐴 𝜑)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wex 1480  wcel 2136  wrex 2445
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-4 1498
This theorem depends on definitions:  df-bi 116  df-rex 2450
This theorem is referenced by:  rsp2e  2517  ssiun2  3909  tfrlem9  6287  tfrlemibxssdm  6295  tfr1onlembxssdm  6311  tfrcllembxssdm  6324  findcard2  6855  findcard2s  6856  prarloclemup  7436  prmuloc2  7508  ltaddpr  7538  aptiprlemu  7581  cauappcvgprlemopl  7587  cauappcvgprlemopu  7589  cauappcvgprlem2  7601  caucvgprlemopl  7610  caucvgprlemopu  7612  caucvgprlem2  7621  caucvgprprlem2  7651  suplocexprlemrl  7658  suplocexprlemru  7660  suplocexprlemlub  7665
  Copyright terms: Public domain W3C validator