ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rspe GIF version

Theorem rspe 2546
Description: Restricted specialization. (Contributed by NM, 12-Oct-1999.)
Assertion
Ref Expression
rspe ((𝑥𝐴𝜑) → ∃𝑥𝐴 𝜑)

Proof of Theorem rspe
StepHypRef Expression
1 19.8a 1604 . 2 ((𝑥𝐴𝜑) → ∃𝑥(𝑥𝐴𝜑))
2 df-rex 2481 . 2 (∃𝑥𝐴 𝜑 ↔ ∃𝑥(𝑥𝐴𝜑))
31, 2sylibr 134 1 ((𝑥𝐴𝜑) → ∃𝑥𝐴 𝜑)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wex 1506  wcel 2167  wrex 2476
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-4 1524
This theorem depends on definitions:  df-bi 117  df-rex 2481
This theorem is referenced by:  rsp2e  2548  ssiun2  3960  tfrlem9  6386  tfrlemibxssdm  6394  tfr1onlembxssdm  6410  tfrcllembxssdm  6423  findcard2  6959  findcard2s  6960  prarloclemup  7579  prmuloc2  7651  ltaddpr  7681  aptiprlemu  7724  cauappcvgprlemopl  7730  cauappcvgprlemopu  7732  cauappcvgprlem2  7744  caucvgprlemopl  7753  caucvgprlemopu  7755  caucvgprlem2  7764  caucvgprprlem2  7794  suplocexprlemrl  7801  suplocexprlemru  7803  suplocexprlemlub  7808
  Copyright terms: Public domain W3C validator