| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rspe | GIF version | ||
| Description: Restricted specialization. (Contributed by NM, 12-Oct-1999.) |
| Ref | Expression |
|---|---|
| rspe | ⊢ ((𝑥 ∈ 𝐴 ∧ 𝜑) → ∃𝑥 ∈ 𝐴 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 19.8a 1604 | . 2 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝜑) → ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
| 2 | df-rex 2481 | . 2 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
| 3 | 1, 2 | sylibr 134 | 1 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝜑) → ∃𝑥 ∈ 𝐴 𝜑) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∃wex 1506 ∈ wcel 2167 ∃wrex 2476 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 |
| This theorem depends on definitions: df-bi 117 df-rex 2481 |
| This theorem is referenced by: rsp2e 2548 ssiun2 3960 tfrlem9 6386 tfrlemibxssdm 6394 tfr1onlembxssdm 6410 tfrcllembxssdm 6423 findcard2 6959 findcard2s 6960 prarloclemup 7581 prmuloc2 7653 ltaddpr 7683 aptiprlemu 7726 cauappcvgprlemopl 7732 cauappcvgprlemopu 7734 cauappcvgprlem2 7746 caucvgprlemopl 7755 caucvgprlemopu 7757 caucvgprlem2 7766 caucvgprprlem2 7796 suplocexprlemrl 7803 suplocexprlemru 7805 suplocexprlemlub 7810 |
| Copyright terms: Public domain | W3C validator |