ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rspe GIF version

Theorem rspe 2556
Description: Restricted specialization. (Contributed by NM, 12-Oct-1999.)
Assertion
Ref Expression
rspe ((𝑥𝐴𝜑) → ∃𝑥𝐴 𝜑)

Proof of Theorem rspe
StepHypRef Expression
1 19.8a 1614 . 2 ((𝑥𝐴𝜑) → ∃𝑥(𝑥𝐴𝜑))
2 df-rex 2491 . 2 (∃𝑥𝐴 𝜑 ↔ ∃𝑥(𝑥𝐴𝜑))
31, 2sylibr 134 1 ((𝑥𝐴𝜑) → ∃𝑥𝐴 𝜑)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wex 1516  wcel 2177  wrex 2486
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-4 1534
This theorem depends on definitions:  df-bi 117  df-rex 2491
This theorem is referenced by:  rsp2e  2558  ssiun2  3972  tfrlem9  6412  tfrlemibxssdm  6420  tfr1onlembxssdm  6436  tfrcllembxssdm  6449  findcard2  6993  findcard2s  6994  prarloclemup  7615  prmuloc2  7687  ltaddpr  7717  aptiprlemu  7760  cauappcvgprlemopl  7766  cauappcvgprlemopu  7768  cauappcvgprlem2  7780  caucvgprlemopl  7789  caucvgprlemopu  7791  caucvgprlem2  7800  caucvgprprlem2  7830  suplocexprlemrl  7837  suplocexprlemru  7839  suplocexprlemlub  7844
  Copyright terms: Public domain W3C validator