| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rspe | GIF version | ||
| Description: Restricted specialization. (Contributed by NM, 12-Oct-1999.) |
| Ref | Expression |
|---|---|
| rspe | ⊢ ((𝑥 ∈ 𝐴 ∧ 𝜑) → ∃𝑥 ∈ 𝐴 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 19.8a 1614 | . 2 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝜑) → ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
| 2 | df-rex 2491 | . 2 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
| 3 | 1, 2 | sylibr 134 | 1 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝜑) → ∃𝑥 ∈ 𝐴 𝜑) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∃wex 1516 ∈ wcel 2177 ∃wrex 2486 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-4 1534 |
| This theorem depends on definitions: df-bi 117 df-rex 2491 |
| This theorem is referenced by: rsp2e 2558 ssiun2 3972 tfrlem9 6412 tfrlemibxssdm 6420 tfr1onlembxssdm 6436 tfrcllembxssdm 6449 findcard2 6993 findcard2s 6994 prarloclemup 7615 prmuloc2 7687 ltaddpr 7717 aptiprlemu 7760 cauappcvgprlemopl 7766 cauappcvgprlemopu 7768 cauappcvgprlem2 7780 caucvgprlemopl 7789 caucvgprlemopu 7791 caucvgprlem2 7800 caucvgprprlem2 7830 suplocexprlemrl 7837 suplocexprlemru 7839 suplocexprlemlub 7844 |
| Copyright terms: Public domain | W3C validator |