ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rspe GIF version

Theorem rspe 2543
Description: Restricted specialization. (Contributed by NM, 12-Oct-1999.)
Assertion
Ref Expression
rspe ((𝑥𝐴𝜑) → ∃𝑥𝐴 𝜑)

Proof of Theorem rspe
StepHypRef Expression
1 19.8a 1601 . 2 ((𝑥𝐴𝜑) → ∃𝑥(𝑥𝐴𝜑))
2 df-rex 2478 . 2 (∃𝑥𝐴 𝜑 ↔ ∃𝑥(𝑥𝐴𝜑))
31, 2sylibr 134 1 ((𝑥𝐴𝜑) → ∃𝑥𝐴 𝜑)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wex 1503  wcel 2164  wrex 2473
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-4 1521
This theorem depends on definitions:  df-bi 117  df-rex 2478
This theorem is referenced by:  rsp2e  2545  ssiun2  3955  tfrlem9  6372  tfrlemibxssdm  6380  tfr1onlembxssdm  6396  tfrcllembxssdm  6409  findcard2  6945  findcard2s  6946  prarloclemup  7555  prmuloc2  7627  ltaddpr  7657  aptiprlemu  7700  cauappcvgprlemopl  7706  cauappcvgprlemopu  7708  cauappcvgprlem2  7720  caucvgprlemopl  7729  caucvgprlemopu  7731  caucvgprlem2  7740  caucvgprprlem2  7770  suplocexprlemrl  7777  suplocexprlemru  7779  suplocexprlemlub  7784
  Copyright terms: Public domain W3C validator