ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rspa Unicode version

Theorem rspa 2505
Description: Restricted specialization. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Assertion
Ref Expression
rspa  |-  ( ( A. x  e.  A  ph 
/\  x  e.  A
)  ->  ph )

Proof of Theorem rspa
StepHypRef Expression
1 rsp 2504 . 2  |-  ( A. x  e.  A  ph  ->  ( x  e.  A  ->  ph ) )
21imp 123 1  |-  ( ( A. x  e.  A  ph 
/\  x  e.  A
)  ->  ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    e. wcel 2128   A.wral 2435
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-4 1490
This theorem depends on definitions:  df-bi 116  df-ral 2440
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator