![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > rsp | GIF version |
Description: Restricted specialization. (Contributed by NM, 17-Oct-1996.) |
Ref | Expression |
---|---|
rsp | ⊢ (∀𝑥 ∈ 𝐴 𝜑 → (𝑥 ∈ 𝐴 → 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ral 2364 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝜑)) | |
2 | sp 1446 | . 2 ⊢ (∀𝑥(𝑥 ∈ 𝐴 → 𝜑) → (𝑥 ∈ 𝐴 → 𝜑)) | |
3 | 1, 2 | sylbi 119 | 1 ⊢ (∀𝑥 ∈ 𝐴 𝜑 → (𝑥 ∈ 𝐴 → 𝜑)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∀wal 1287 ∈ wcel 1438 ∀wral 2359 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-4 1445 |
This theorem depends on definitions: df-bi 115 df-ral 2364 |
This theorem is referenced by: rsp2 2425 rspec 2427 r19.12 2478 ralbi 2501 rexbi 2502 reupick2 3285 dfiun2g 3762 iinss2 3782 invdisj 3839 mpteq12f 3918 trss 3945 sowlin 4147 reusv1 4280 reusv3 4282 ralxfrALT 4289 funimaexglem 5097 fun11iun 5274 fvmptssdm 5387 ffnfv 5456 riota5f 5632 mpt2eq123 5708 tfri3 6132 nneneq 6573 cauappcvgprlemladdru 7215 cauappcvgprlemladdrl 7216 caucvgprlemm 7227 indstr 9081 bezoutlemzz 11269 bj-rspgt 11686 |
Copyright terms: Public domain | W3C validator |