| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rsp | GIF version | ||
| Description: Restricted specialization. (Contributed by NM, 17-Oct-1996.) |
| Ref | Expression |
|---|---|
| rsp | ⊢ (∀𝑥 ∈ 𝐴 𝜑 → (𝑥 ∈ 𝐴 → 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ral 2488 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝜑)) | |
| 2 | sp 1533 | . 2 ⊢ (∀𝑥(𝑥 ∈ 𝐴 → 𝜑) → (𝑥 ∈ 𝐴 → 𝜑)) | |
| 3 | 1, 2 | sylbi 121 | 1 ⊢ (∀𝑥 ∈ 𝐴 𝜑 → (𝑥 ∈ 𝐴 → 𝜑)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∀wal 1370 ∈ wcel 2175 ∀wral 2483 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-4 1532 |
| This theorem depends on definitions: df-bi 117 df-ral 2488 |
| This theorem is referenced by: rspa 2553 rsp2 2555 rspec 2557 r19.12 2611 ralbi 2637 rexbi 2638 reupick2 3458 dfiun2g 3958 iinss2 3979 invdisj 4037 mpteq12f 4123 trss 4150 sowlin 4365 reusv1 4503 reusv3 4505 ralxfrALT 4512 funimaexglem 5351 fun11iun 5537 fvmptssdm 5658 ffnfv 5732 riota5f 5914 mpoeq123 5994 tfri3 6443 nneneq 6936 mkvprop 7242 cauappcvgprlemladdru 7751 cauappcvgprlemladdrl 7752 caucvgprlemm 7763 suplocexprlemss 7810 suplocsrlem 7903 indstr 9696 nninfinf 10569 prodeq2 11787 fprodle 11870 bezoutlemzz 12242 sgrpidmndm 13170 srgdilem 13649 ringdilem 13692 tgcl 14454 fsumcncntop 14957 dedekindeulemlu 15011 dedekindicclemlu 15020 bj-rspgt 15586 bj-charfunr 15610 |
| Copyright terms: Public domain | W3C validator |