Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > rsp | GIF version |
Description: Restricted specialization. (Contributed by NM, 17-Oct-1996.) |
Ref | Expression |
---|---|
rsp | ⊢ (∀𝑥 ∈ 𝐴 𝜑 → (𝑥 ∈ 𝐴 → 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ral 2449 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝜑)) | |
2 | sp 1499 | . 2 ⊢ (∀𝑥(𝑥 ∈ 𝐴 → 𝜑) → (𝑥 ∈ 𝐴 → 𝜑)) | |
3 | 1, 2 | sylbi 120 | 1 ⊢ (∀𝑥 ∈ 𝐴 𝜑 → (𝑥 ∈ 𝐴 → 𝜑)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∀wal 1341 ∈ wcel 2136 ∀wral 2444 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-4 1498 |
This theorem depends on definitions: df-bi 116 df-ral 2449 |
This theorem is referenced by: rspa 2514 rsp2 2516 rspec 2518 r19.12 2572 ralbi 2598 rexbi 2599 reupick2 3408 dfiun2g 3898 iinss2 3918 invdisj 3976 mpteq12f 4062 trss 4089 sowlin 4298 reusv1 4436 reusv3 4438 ralxfrALT 4445 funimaexglem 5271 fun11iun 5453 fvmptssdm 5570 ffnfv 5643 riota5f 5822 mpoeq123 5901 tfri3 6335 nneneq 6823 mkvprop 7122 cauappcvgprlemladdru 7597 cauappcvgprlemladdrl 7598 caucvgprlemm 7609 suplocexprlemss 7656 suplocsrlem 7749 indstr 9531 prodeq2 11498 fprodle 11581 bezoutlemzz 11935 tgcl 12704 fsumcncntop 13196 dedekindeulemlu 13239 dedekindicclemlu 13248 bj-rspgt 13667 bj-charfunr 13692 |
Copyright terms: Public domain | W3C validator |