ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rsp GIF version

Theorem rsp 2524
Description: Restricted specialization. (Contributed by NM, 17-Oct-1996.)
Assertion
Ref Expression
rsp (∀𝑥𝐴 𝜑 → (𝑥𝐴𝜑))

Proof of Theorem rsp
StepHypRef Expression
1 df-ral 2460 . 2 (∀𝑥𝐴 𝜑 ↔ ∀𝑥(𝑥𝐴𝜑))
2 sp 1511 . 2 (∀𝑥(𝑥𝐴𝜑) → (𝑥𝐴𝜑))
31, 2sylbi 121 1 (∀𝑥𝐴 𝜑 → (𝑥𝐴𝜑))
Colors of variables: wff set class
Syntax hints:  wi 4  wal 1351  wcel 2148  wral 2455
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-4 1510
This theorem depends on definitions:  df-bi 117  df-ral 2460
This theorem is referenced by:  rspa  2525  rsp2  2527  rspec  2529  r19.12  2583  ralbi  2609  rexbi  2610  reupick2  3422  dfiun2g  3919  iinss2  3940  invdisj  3998  mpteq12f  4084  trss  4111  sowlin  4321  reusv1  4459  reusv3  4461  ralxfrALT  4468  funimaexglem  5300  fun11iun  5483  fvmptssdm  5601  ffnfv  5675  riota5f  5855  mpoeq123  5934  tfri3  6368  nneneq  6857  mkvprop  7156  cauappcvgprlemladdru  7655  cauappcvgprlemladdrl  7656  caucvgprlemm  7667  suplocexprlemss  7714  suplocsrlem  7807  indstr  9593  prodeq2  11565  fprodle  11648  bezoutlemzz  12003  sgrpidmndm  12821  srgdilem  13152  ringdilem  13195  tgcl  13567  fsumcncntop  14059  dedekindeulemlu  14102  dedekindicclemlu  14111  bj-rspgt  14541  bj-charfunr  14565
  Copyright terms: Public domain W3C validator