![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > rsp | GIF version |
Description: Restricted specialization. (Contributed by NM, 17-Oct-1996.) |
Ref | Expression |
---|---|
rsp | ⊢ (∀𝑥 ∈ 𝐴 𝜑 → (𝑥 ∈ 𝐴 → 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ral 2477 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝜑)) | |
2 | sp 1522 | . 2 ⊢ (∀𝑥(𝑥 ∈ 𝐴 → 𝜑) → (𝑥 ∈ 𝐴 → 𝜑)) | |
3 | 1, 2 | sylbi 121 | 1 ⊢ (∀𝑥 ∈ 𝐴 𝜑 → (𝑥 ∈ 𝐴 → 𝜑)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∀wal 1362 ∈ wcel 2164 ∀wral 2472 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-4 1521 |
This theorem depends on definitions: df-bi 117 df-ral 2477 |
This theorem is referenced by: rspa 2542 rsp2 2544 rspec 2546 r19.12 2600 ralbi 2626 rexbi 2627 reupick2 3445 dfiun2g 3944 iinss2 3965 invdisj 4023 mpteq12f 4109 trss 4136 sowlin 4351 reusv1 4489 reusv3 4491 ralxfrALT 4498 funimaexglem 5337 fun11iun 5521 fvmptssdm 5642 ffnfv 5716 riota5f 5898 mpoeq123 5977 tfri3 6420 nneneq 6913 mkvprop 7217 cauappcvgprlemladdru 7716 cauappcvgprlemladdrl 7717 caucvgprlemm 7728 suplocexprlemss 7775 suplocsrlem 7868 indstr 9658 nninfinf 10514 prodeq2 11700 fprodle 11783 bezoutlemzz 12139 sgrpidmndm 13001 srgdilem 13465 ringdilem 13508 tgcl 14232 fsumcncntop 14724 dedekindeulemlu 14775 dedekindicclemlu 14784 bj-rspgt 15278 bj-charfunr 15302 |
Copyright terms: Public domain | W3C validator |