ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rsp GIF version

Theorem rsp 2554
Description: Restricted specialization. (Contributed by NM, 17-Oct-1996.)
Assertion
Ref Expression
rsp (∀𝑥𝐴 𝜑 → (𝑥𝐴𝜑))

Proof of Theorem rsp
StepHypRef Expression
1 df-ral 2490 . 2 (∀𝑥𝐴 𝜑 ↔ ∀𝑥(𝑥𝐴𝜑))
2 sp 1535 . 2 (∀𝑥(𝑥𝐴𝜑) → (𝑥𝐴𝜑))
31, 2sylbi 121 1 (∀𝑥𝐴 𝜑 → (𝑥𝐴𝜑))
Colors of variables: wff set class
Syntax hints:  wi 4  wal 1371  wcel 2177  wral 2485
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-4 1534
This theorem depends on definitions:  df-bi 117  df-ral 2490
This theorem is referenced by:  rspa  2555  rsp2  2557  rspec  2559  r19.12  2613  ralbi  2639  rexbi  2640  reupick2  3463  dfiun2g  3965  iinss2  3986  invdisj  4044  mpteq12f  4132  trss  4159  sowlin  4375  reusv1  4513  reusv3  4515  ralxfrALT  4522  funimaexglem  5366  fun11iun  5555  fvmptssdm  5677  ffnfv  5751  riota5f  5937  mpoeq123  6017  tfri3  6466  nneneq  6969  mkvprop  7275  cauappcvgprlemladdru  7789  cauappcvgprlemladdrl  7790  caucvgprlemm  7801  suplocexprlemss  7848  suplocsrlem  7941  indstr  9734  nninfinf  10610  prodeq2  11943  fprodle  12026  bezoutlemzz  12398  sgrpidmndm  13327  srgdilem  13806  ringdilem  13849  tgcl  14611  fsumcncntop  15114  dedekindeulemlu  15168  dedekindicclemlu  15177  bj-rspgt  15861  bj-charfunr  15884
  Copyright terms: Public domain W3C validator