Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > rsp | GIF version |
Description: Restricted specialization. (Contributed by NM, 17-Oct-1996.) |
Ref | Expression |
---|---|
rsp | ⊢ (∀𝑥 ∈ 𝐴 𝜑 → (𝑥 ∈ 𝐴 → 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ral 2453 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝜑)) | |
2 | sp 1504 | . 2 ⊢ (∀𝑥(𝑥 ∈ 𝐴 → 𝜑) → (𝑥 ∈ 𝐴 → 𝜑)) | |
3 | 1, 2 | sylbi 120 | 1 ⊢ (∀𝑥 ∈ 𝐴 𝜑 → (𝑥 ∈ 𝐴 → 𝜑)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∀wal 1346 ∈ wcel 2141 ∀wral 2448 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-4 1503 |
This theorem depends on definitions: df-bi 116 df-ral 2453 |
This theorem is referenced by: rspa 2518 rsp2 2520 rspec 2522 r19.12 2576 ralbi 2602 rexbi 2603 reupick2 3413 dfiun2g 3905 iinss2 3925 invdisj 3983 mpteq12f 4069 trss 4096 sowlin 4305 reusv1 4443 reusv3 4445 ralxfrALT 4452 funimaexglem 5281 fun11iun 5463 fvmptssdm 5580 ffnfv 5654 riota5f 5833 mpoeq123 5912 tfri3 6346 nneneq 6835 mkvprop 7134 cauappcvgprlemladdru 7618 cauappcvgprlemladdrl 7619 caucvgprlemm 7630 suplocexprlemss 7677 suplocsrlem 7770 indstr 9552 prodeq2 11520 fprodle 11603 bezoutlemzz 11957 sgrpidmndm 12656 tgcl 12858 fsumcncntop 13350 dedekindeulemlu 13393 dedekindicclemlu 13402 bj-rspgt 13821 bj-charfunr 13845 |
Copyright terms: Public domain | W3C validator |