Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > rsp | GIF version |
Description: Restricted specialization. (Contributed by NM, 17-Oct-1996.) |
Ref | Expression |
---|---|
rsp | ⊢ (∀𝑥 ∈ 𝐴 𝜑 → (𝑥 ∈ 𝐴 → 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ral 2440 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝜑)) | |
2 | sp 1491 | . 2 ⊢ (∀𝑥(𝑥 ∈ 𝐴 → 𝜑) → (𝑥 ∈ 𝐴 → 𝜑)) | |
3 | 1, 2 | sylbi 120 | 1 ⊢ (∀𝑥 ∈ 𝐴 𝜑 → (𝑥 ∈ 𝐴 → 𝜑)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∀wal 1333 ∈ wcel 2128 ∀wral 2435 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-4 1490 |
This theorem depends on definitions: df-bi 116 df-ral 2440 |
This theorem is referenced by: rspa 2505 rsp2 2507 rspec 2509 r19.12 2563 ralbi 2589 rexbi 2590 reupick2 3393 dfiun2g 3881 iinss2 3901 invdisj 3959 mpteq12f 4044 trss 4071 sowlin 4279 reusv1 4416 reusv3 4418 ralxfrALT 4425 funimaexglem 5250 fun11iun 5432 fvmptssdm 5549 ffnfv 5622 riota5f 5798 mpoeq123 5874 tfri3 6308 nneneq 6795 mkvprop 7084 cauappcvgprlemladdru 7559 cauappcvgprlemladdrl 7560 caucvgprlemm 7571 suplocexprlemss 7618 suplocsrlem 7711 indstr 9487 prodeq2 11436 fprodle 11519 bezoutlemzz 11866 tgcl 12424 fsumcncntop 12916 dedekindeulemlu 12959 dedekindicclemlu 12968 bj-rspgt 13319 bj-charfunr 13344 |
Copyright terms: Public domain | W3C validator |