| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rsp | GIF version | ||
| Description: Restricted specialization. (Contributed by NM, 17-Oct-1996.) |
| Ref | Expression |
|---|---|
| rsp | ⊢ (∀𝑥 ∈ 𝐴 𝜑 → (𝑥 ∈ 𝐴 → 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ral 2480 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝜑)) | |
| 2 | sp 1525 | . 2 ⊢ (∀𝑥(𝑥 ∈ 𝐴 → 𝜑) → (𝑥 ∈ 𝐴 → 𝜑)) | |
| 3 | 1, 2 | sylbi 121 | 1 ⊢ (∀𝑥 ∈ 𝐴 𝜑 → (𝑥 ∈ 𝐴 → 𝜑)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∀wal 1362 ∈ wcel 2167 ∀wral 2475 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-4 1524 |
| This theorem depends on definitions: df-bi 117 df-ral 2480 |
| This theorem is referenced by: rspa 2545 rsp2 2547 rspec 2549 r19.12 2603 ralbi 2629 rexbi 2630 reupick2 3450 dfiun2g 3949 iinss2 3970 invdisj 4028 mpteq12f 4114 trss 4141 sowlin 4356 reusv1 4494 reusv3 4496 ralxfrALT 4503 funimaexglem 5342 fun11iun 5528 fvmptssdm 5649 ffnfv 5723 riota5f 5905 mpoeq123 5985 tfri3 6434 nneneq 6927 mkvprop 7233 cauappcvgprlemladdru 7742 cauappcvgprlemladdrl 7743 caucvgprlemm 7754 suplocexprlemss 7801 suplocsrlem 7894 indstr 9686 nninfinf 10554 prodeq2 11741 fprodle 11824 bezoutlemzz 12196 sgrpidmndm 13124 srgdilem 13603 ringdilem 13646 tgcl 14408 fsumcncntop 14911 dedekindeulemlu 14965 dedekindicclemlu 14974 bj-rspgt 15540 bj-charfunr 15564 |
| Copyright terms: Public domain | W3C validator |