| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rsp | GIF version | ||
| Description: Restricted specialization. (Contributed by NM, 17-Oct-1996.) |
| Ref | Expression |
|---|---|
| rsp | ⊢ (∀𝑥 ∈ 𝐴 𝜑 → (𝑥 ∈ 𝐴 → 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ral 2490 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝜑)) | |
| 2 | sp 1535 | . 2 ⊢ (∀𝑥(𝑥 ∈ 𝐴 → 𝜑) → (𝑥 ∈ 𝐴 → 𝜑)) | |
| 3 | 1, 2 | sylbi 121 | 1 ⊢ (∀𝑥 ∈ 𝐴 𝜑 → (𝑥 ∈ 𝐴 → 𝜑)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∀wal 1371 ∈ wcel 2177 ∀wral 2485 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-4 1534 |
| This theorem depends on definitions: df-bi 117 df-ral 2490 |
| This theorem is referenced by: rspa 2555 rsp2 2557 rspec 2559 r19.12 2613 ralbi 2639 rexbi 2640 reupick2 3463 dfiun2g 3965 iinss2 3986 invdisj 4044 mpteq12f 4132 trss 4159 sowlin 4375 reusv1 4513 reusv3 4515 ralxfrALT 4522 funimaexglem 5366 fun11iun 5555 fvmptssdm 5677 ffnfv 5751 riota5f 5937 mpoeq123 6017 tfri3 6466 nneneq 6969 mkvprop 7275 cauappcvgprlemladdru 7789 cauappcvgprlemladdrl 7790 caucvgprlemm 7801 suplocexprlemss 7848 suplocsrlem 7941 indstr 9734 nninfinf 10610 prodeq2 11943 fprodle 12026 bezoutlemzz 12398 sgrpidmndm 13327 srgdilem 13806 ringdilem 13849 tgcl 14611 fsumcncntop 15114 dedekindeulemlu 15168 dedekindicclemlu 15177 bj-rspgt 15861 bj-charfunr 15884 |
| Copyright terms: Public domain | W3C validator |