| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rsp | GIF version | ||
| Description: Restricted specialization. (Contributed by NM, 17-Oct-1996.) |
| Ref | Expression |
|---|---|
| rsp | ⊢ (∀𝑥 ∈ 𝐴 𝜑 → (𝑥 ∈ 𝐴 → 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ral 2488 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝜑)) | |
| 2 | sp 1533 | . 2 ⊢ (∀𝑥(𝑥 ∈ 𝐴 → 𝜑) → (𝑥 ∈ 𝐴 → 𝜑)) | |
| 3 | 1, 2 | sylbi 121 | 1 ⊢ (∀𝑥 ∈ 𝐴 𝜑 → (𝑥 ∈ 𝐴 → 𝜑)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∀wal 1370 ∈ wcel 2175 ∀wral 2483 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-4 1532 |
| This theorem depends on definitions: df-bi 117 df-ral 2488 |
| This theorem is referenced by: rspa 2553 rsp2 2555 rspec 2557 r19.12 2611 ralbi 2637 rexbi 2638 reupick2 3458 dfiun2g 3958 iinss2 3979 invdisj 4037 mpteq12f 4123 trss 4150 sowlin 4366 reusv1 4504 reusv3 4506 ralxfrALT 4513 funimaexglem 5356 fun11iun 5542 fvmptssdm 5663 ffnfv 5737 riota5f 5923 mpoeq123 6003 tfri3 6452 nneneq 6953 mkvprop 7259 cauappcvgprlemladdru 7768 cauappcvgprlemladdrl 7769 caucvgprlemm 7780 suplocexprlemss 7827 suplocsrlem 7920 indstr 9713 nninfinf 10586 prodeq2 11810 fprodle 11893 bezoutlemzz 12265 sgrpidmndm 13194 srgdilem 13673 ringdilem 13716 tgcl 14478 fsumcncntop 14981 dedekindeulemlu 15035 dedekindicclemlu 15044 bj-rspgt 15655 bj-charfunr 15679 |
| Copyright terms: Public domain | W3C validator |