| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rsp | GIF version | ||
| Description: Restricted specialization. (Contributed by NM, 17-Oct-1996.) |
| Ref | Expression |
|---|---|
| rsp | ⊢ (∀𝑥 ∈ 𝐴 𝜑 → (𝑥 ∈ 𝐴 → 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ral 2513 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝜑)) | |
| 2 | sp 1557 | . 2 ⊢ (∀𝑥(𝑥 ∈ 𝐴 → 𝜑) → (𝑥 ∈ 𝐴 → 𝜑)) | |
| 3 | 1, 2 | sylbi 121 | 1 ⊢ (∀𝑥 ∈ 𝐴 𝜑 → (𝑥 ∈ 𝐴 → 𝜑)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∀wal 1393 ∈ wcel 2200 ∀wral 2508 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-4 1556 |
| This theorem depends on definitions: df-bi 117 df-ral 2513 |
| This theorem is referenced by: rspa 2578 rsp2 2580 rspec 2582 r19.12 2637 ralbi 2663 rexbi 2664 reupick2 3490 dfiun2g 3996 iinss2 4017 invdisj 4075 mpteq12f 4163 trss 4190 sowlin 4410 reusv1 4548 reusv3 4550 ralxfrALT 4557 funimaexglem 5403 fun11iun 5592 fvmptssdm 5718 ffnfv 5792 riota5f 5980 mpoeq123 6062 tfri3 6511 nneneq 7014 mkvprop 7321 cauappcvgprlemladdru 7839 cauappcvgprlemladdrl 7840 caucvgprlemm 7851 suplocexprlemss 7898 suplocsrlem 7991 indstr 9784 nninfinf 10660 prodeq2 12063 fprodle 12146 bezoutlemzz 12518 sgrpidmndm 13448 srgdilem 13927 ringdilem 13970 tgcl 14732 fsumcncntop 15235 dedekindeulemlu 15289 dedekindicclemlu 15298 bj-rspgt 16108 bj-charfunr 16131 |
| Copyright terms: Public domain | W3C validator |