HomeHome Intuitionistic Logic Explorer
Theorem List (p. 26 of 142)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 2501-2600   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremnfra1 2501 𝑥 is not free in 𝑥𝐴𝜑. (Contributed by NM, 18-Oct-1996.) (Revised by Mario Carneiro, 7-Oct-2016.)
𝑥𝑥𝐴 𝜑
 
Theoremnfraldw 2502* Not-free for restricted universal quantification where 𝑥 and 𝑦 are distinct. See nfraldya 2505 for a version with 𝑦 and 𝐴 distinct instead. (Contributed by NM, 15-Feb-2013.) (Revised by Gino Giotto, 10-Jan-2024.)
𝑦𝜑    &   (𝜑𝑥𝐴)    &   (𝜑 → Ⅎ𝑥𝜓)       (𝜑 → Ⅎ𝑥𝑦𝐴 𝜓)
 
Theoremnfraldxy 2503* Old name for nfraldw 2502. (Contributed by Jim Kingdon, 29-May-2018.) (New usage is discouraged.)
𝑦𝜑    &   (𝜑𝑥𝐴)    &   (𝜑 → Ⅎ𝑥𝜓)       (𝜑 → Ⅎ𝑥𝑦𝐴 𝜓)
 
Theoremnfrexdxy 2504* Not-free for restricted existential quantification where 𝑥 and 𝑦 are distinct. See nfrexdya 2506 for a version with 𝑦 and 𝐴 distinct instead. (Contributed by Jim Kingdon, 30-May-2018.)
𝑦𝜑    &   (𝜑𝑥𝐴)    &   (𝜑 → Ⅎ𝑥𝜓)       (𝜑 → Ⅎ𝑥𝑦𝐴 𝜓)
 
Theoremnfraldya 2505* Not-free for restricted universal quantification where 𝑦 and 𝐴 are distinct. See nfraldxy 2503 for a version with 𝑥 and 𝑦 distinct instead. (Contributed by Jim Kingdon, 30-May-2018.)
𝑦𝜑    &   (𝜑𝑥𝐴)    &   (𝜑 → Ⅎ𝑥𝜓)       (𝜑 → Ⅎ𝑥𝑦𝐴 𝜓)
 
Theoremnfrexdya 2506* Not-free for restricted existential quantification where 𝑦 and 𝐴 are distinct. See nfrexdxy 2504 for a version with 𝑥 and 𝑦 distinct instead. (Contributed by Jim Kingdon, 30-May-2018.)
𝑦𝜑    &   (𝜑𝑥𝐴)    &   (𝜑 → Ⅎ𝑥𝜓)       (𝜑 → Ⅎ𝑥𝑦𝐴 𝜓)
 
Theoremnfralw 2507* Bound-variable hypothesis builder for restricted quantification. See nfralya 2510 for a version with 𝑦 and 𝐴 distinct instead of 𝑥 and 𝑦. (Contributed by NM, 1-Sep-1999.) (Revised by Gino Giotto, 10-Jan-2024.)
𝑥𝐴    &   𝑥𝜑       𝑥𝑦𝐴 𝜑
 
Theoremnfralxy 2508* Old name for nfralw 2507. (Contributed by Jim Kingdon, 30-May-2018.) (New usage is discouraged.)
𝑥𝐴    &   𝑥𝜑       𝑥𝑦𝐴 𝜑
 
Theoremnfrexxy 2509* Not-free for restricted existential quantification where 𝑥 and 𝑦 are distinct. See nfrexya 2511 for a version with 𝑦 and 𝐴 distinct instead. (Contributed by Jim Kingdon, 30-May-2018.)
𝑥𝐴    &   𝑥𝜑       𝑥𝑦𝐴 𝜑
 
Theoremnfralya 2510* Not-free for restricted universal quantification where 𝑦 and 𝐴 are distinct. See nfralxy 2508 for a version with 𝑥 and 𝑦 distinct instead. (Contributed by Jim Kingdon, 3-Jun-2018.)
𝑥𝐴    &   𝑥𝜑       𝑥𝑦𝐴 𝜑
 
Theoremnfrexya 2511* Not-free for restricted existential quantification where 𝑦 and 𝐴 are distinct. See nfrexxy 2509 for a version with 𝑥 and 𝑦 distinct instead. (Contributed by Jim Kingdon, 3-Jun-2018.)
𝑥𝐴    &   𝑥𝜑       𝑥𝑦𝐴 𝜑
 
Theoremnfra2xy 2512* Not-free given two restricted quantifiers. (Contributed by Jim Kingdon, 20-Aug-2018.)
𝑦𝑥𝐴𝑦𝐵 𝜑
 
Theoremnfre1 2513 𝑥 is not free in 𝑥𝐴𝜑. (Contributed by NM, 19-Mar-1997.) (Revised by Mario Carneiro, 7-Oct-2016.)
𝑥𝑥𝐴 𝜑
 
Theoremr3al 2514* Triple restricted universal quantification. (Contributed by NM, 19-Nov-1995.)
(∀𝑥𝐴𝑦𝐵𝑧𝐶 𝜑 ↔ ∀𝑥𝑦𝑧((𝑥𝐴𝑦𝐵𝑧𝐶) → 𝜑))
 
Theoremalral 2515 Universal quantification implies restricted quantification. (Contributed by NM, 20-Oct-2006.)
(∀𝑥𝜑 → ∀𝑥𝐴 𝜑)
 
Theoremrexex 2516 Restricted existence implies existence. (Contributed by NM, 11-Nov-1995.)
(∃𝑥𝐴 𝜑 → ∃𝑥𝜑)
 
Theoremrsp 2517 Restricted specialization. (Contributed by NM, 17-Oct-1996.)
(∀𝑥𝐴 𝜑 → (𝑥𝐴𝜑))
 
Theoremrspa 2518 Restricted specialization. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
((∀𝑥𝐴 𝜑𝑥𝐴) → 𝜑)
 
Theoremrspe 2519 Restricted specialization. (Contributed by NM, 12-Oct-1999.)
((𝑥𝐴𝜑) → ∃𝑥𝐴 𝜑)
 
Theoremrsp2 2520 Restricted specialization. (Contributed by NM, 11-Feb-1997.)
(∀𝑥𝐴𝑦𝐵 𝜑 → ((𝑥𝐴𝑦𝐵) → 𝜑))
 
Theoremrsp2e 2521 Restricted specialization. (Contributed by FL, 4-Jun-2012.)
((𝑥𝐴𝑦𝐵𝜑) → ∃𝑥𝐴𝑦𝐵 𝜑)
 
Theoremrspec 2522 Specialization rule for restricted quantification. (Contributed by NM, 19-Nov-1994.)
𝑥𝐴 𝜑       (𝑥𝐴𝜑)
 
Theoremrgen 2523 Generalization rule for restricted quantification. (Contributed by NM, 19-Nov-1994.)
(𝑥𝐴𝜑)       𝑥𝐴 𝜑
 
Theoremrgen2a 2524* Generalization rule for restricted quantification. Note that 𝑥 and 𝑦 are not required to be disjoint. This proof illustrates the use of dvelim 2010. Usage of rgen2 2556 instead is highly encouraged. (Contributed by NM, 23-Nov-1994.) (Proof rewritten by Jim Kingdon, 1-Jun-2018.) (New usage is discouraged.)
((𝑥𝐴𝑦𝐴) → 𝜑)       𝑥𝐴𝑦𝐴 𝜑
 
Theoremrgenw 2525 Generalization rule for restricted quantification. (Contributed by NM, 18-Jun-2014.)
𝜑       𝑥𝐴 𝜑
 
Theoremrgen2w 2526 Generalization rule for restricted quantification. Note that 𝑥 and 𝑦 needn't be distinct. (Contributed by NM, 18-Jun-2014.)
𝜑       𝑥𝐴𝑦𝐵 𝜑
 
Theoremmprg 2527 Modus ponens combined with restricted generalization. (Contributed by NM, 10-Aug-2004.)
(∀𝑥𝐴 𝜑𝜓)    &   (𝑥𝐴𝜑)       𝜓
 
Theoremmprgbir 2528 Modus ponens on biconditional combined with restricted generalization. (Contributed by NM, 21-Mar-2004.)
(𝜑 ↔ ∀𝑥𝐴 𝜓)    &   (𝑥𝐴𝜓)       𝜑
 
Theoremralim 2529 Distribution of restricted quantification over implication. (Contributed by NM, 9-Feb-1997.)
(∀𝑥𝐴 (𝜑𝜓) → (∀𝑥𝐴 𝜑 → ∀𝑥𝐴 𝜓))
 
Theoremralimi2 2530 Inference quantifying both antecedent and consequent. (Contributed by NM, 22-Feb-2004.)
((𝑥𝐴𝜑) → (𝑥𝐵𝜓))       (∀𝑥𝐴 𝜑 → ∀𝑥𝐵 𝜓)
 
Theoremralimia 2531 Inference quantifying both antecedent and consequent. (Contributed by NM, 19-Jul-1996.)
(𝑥𝐴 → (𝜑𝜓))       (∀𝑥𝐴 𝜑 → ∀𝑥𝐴 𝜓)
 
Theoremralimiaa 2532 Inference quantifying both antecedent and consequent. (Contributed by NM, 4-Aug-2007.)
((𝑥𝐴𝜑) → 𝜓)       (∀𝑥𝐴 𝜑 → ∀𝑥𝐴 𝜓)
 
Theoremralimi 2533 Inference quantifying both antecedent and consequent, with strong hypothesis. (Contributed by NM, 4-Mar-1997.)
(𝜑𝜓)       (∀𝑥𝐴 𝜑 → ∀𝑥𝐴 𝜓)
 
Theorem2ralimi 2534 Inference quantifying both antecedent and consequent two times, with strong hypothesis. (Contributed by AV, 3-Dec-2021.)
(𝜑𝜓)       (∀𝑥𝐴𝑦𝐵 𝜑 → ∀𝑥𝐴𝑦𝐵 𝜓)
 
Theoremral2imi 2535 Inference quantifying antecedent, nested antecedent, and consequent, with a strong hypothesis. (Contributed by NM, 19-Dec-2006.)
(𝜑 → (𝜓𝜒))       (∀𝑥𝐴 𝜑 → (∀𝑥𝐴 𝜓 → ∀𝑥𝐴 𝜒))
 
Theoremralimdaa 2536 Deduction quantifying both antecedent and consequent, based on Theorem 19.20 of [Margaris] p. 90. (Contributed by NM, 22-Sep-2003.)
𝑥𝜑    &   ((𝜑𝑥𝐴) → (𝜓𝜒))       (𝜑 → (∀𝑥𝐴 𝜓 → ∀𝑥𝐴 𝜒))
 
Theoremralimdva 2537* Deduction quantifying both antecedent and consequent, based on Theorem 19.20 of [Margaris] p. 90. (Contributed by NM, 22-May-1999.)
((𝜑𝑥𝐴) → (𝜓𝜒))       (𝜑 → (∀𝑥𝐴 𝜓 → ∀𝑥𝐴 𝜒))
 
Theoremralimdv 2538* Deduction quantifying both antecedent and consequent, based on Theorem 19.20 of [Margaris] p. 90. (Contributed by NM, 8-Oct-2003.)
(𝜑 → (𝜓𝜒))       (𝜑 → (∀𝑥𝐴 𝜓 → ∀𝑥𝐴 𝜒))
 
Theoremralimdvva 2539* Deduction doubly quantifying both antecedent and consequent, based on Theorem 19.20 of [Margaris] p. 90 (alim 1450). (Contributed by AV, 27-Nov-2019.)
((𝜑 ∧ (𝑥𝐴𝑦𝐵)) → (𝜓𝜒))       (𝜑 → (∀𝑥𝐴𝑦𝐵 𝜓 → ∀𝑥𝐴𝑦𝐵 𝜒))
 
Theoremralimdv2 2540* Inference quantifying both antecedent and consequent. (Contributed by NM, 1-Feb-2005.)
(𝜑 → ((𝑥𝐴𝜓) → (𝑥𝐵𝜒)))       (𝜑 → (∀𝑥𝐴 𝜓 → ∀𝑥𝐵 𝜒))
 
Theoremralrimi 2541 Inference from Theorem 19.21 of [Margaris] p. 90 (restricted quantifier version). (Contributed by NM, 10-Oct-1999.)
𝑥𝜑    &   (𝜑 → (𝑥𝐴𝜓))       (𝜑 → ∀𝑥𝐴 𝜓)
 
Theoremralrimiv 2542* Inference from Theorem 19.21 of [Margaris] p. 90. (Restricted quantifier version.) (Contributed by NM, 22-Nov-1994.)
(𝜑 → (𝑥𝐴𝜓))       (𝜑 → ∀𝑥𝐴 𝜓)
 
Theoremralrimiva 2543* Inference from Theorem 19.21 of [Margaris] p. 90. (Restricted quantifier version.) (Contributed by NM, 2-Jan-2006.)
((𝜑𝑥𝐴) → 𝜓)       (𝜑 → ∀𝑥𝐴 𝜓)
 
Theoremralrimivw 2544* Inference from Theorem 19.21 of [Margaris] p. 90. (Restricted quantifier version.) (Contributed by NM, 18-Jun-2014.)
(𝜑𝜓)       (𝜑 → ∀𝑥𝐴 𝜓)
 
Theoremr19.21t 2545 Theorem 19.21 of [Margaris] p. 90 with restricted quantifiers (closed theorem version). (Contributed by NM, 1-Mar-2008.)
(Ⅎ𝑥𝜑 → (∀𝑥𝐴 (𝜑𝜓) ↔ (𝜑 → ∀𝑥𝐴 𝜓)))
 
Theoremr19.21 2546 Theorem 19.21 of [Margaris] p. 90 with restricted quantifiers. (Contributed by Scott Fenton, 30-Mar-2011.)
𝑥𝜑       (∀𝑥𝐴 (𝜑𝜓) ↔ (𝜑 → ∀𝑥𝐴 𝜓))
 
Theoremr19.21v 2547* Theorem 19.21 of [Margaris] p. 90 with restricted quantifiers. (Contributed by NM, 15-Oct-2003.) (Proof shortened by Andrew Salmon, 30-May-2011.)
(∀𝑥𝐴 (𝜑𝜓) ↔ (𝜑 → ∀𝑥𝐴 𝜓))
 
Theoremralrimd 2548 Inference from Theorem 19.21 of [Margaris] p. 90. (Restricted quantifier version.) (Contributed by NM, 16-Feb-2004.)
𝑥𝜑    &   𝑥𝜓    &   (𝜑 → (𝜓 → (𝑥𝐴𝜒)))       (𝜑 → (𝜓 → ∀𝑥𝐴 𝜒))
 
Theoremralrimdv 2549* Inference from Theorem 19.21 of [Margaris] p. 90. (Restricted quantifier version.) (Contributed by NM, 27-May-1998.)
(𝜑 → (𝜓 → (𝑥𝐴𝜒)))       (𝜑 → (𝜓 → ∀𝑥𝐴 𝜒))
 
Theoremralrimdva 2550* Inference from Theorem 19.21 of [Margaris] p. 90. (Restricted quantifier version.) (Contributed by NM, 2-Feb-2008.)
((𝜑𝑥𝐴) → (𝜓𝜒))       (𝜑 → (𝜓 → ∀𝑥𝐴 𝜒))
 
Theoremralrimivv 2551* Inference from Theorem 19.21 of [Margaris] p. 90. (Restricted quantifier version with double quantification.) (Contributed by NM, 24-Jul-2004.)
(𝜑 → ((𝑥𝐴𝑦𝐵) → 𝜓))       (𝜑 → ∀𝑥𝐴𝑦𝐵 𝜓)
 
Theoremralrimivva 2552* Inference from Theorem 19.21 of [Margaris] p. 90. (Restricted quantifier version with double quantification.) (Contributed by Jeff Madsen, 19-Jun-2011.)
((𝜑 ∧ (𝑥𝐴𝑦𝐵)) → 𝜓)       (𝜑 → ∀𝑥𝐴𝑦𝐵 𝜓)
 
Theoremralrimivvva 2553* Inference from Theorem 19.21 of [Margaris] p. 90. (Restricted quantifier version with triple quantification.) (Contributed by Mario Carneiro, 9-Jul-2014.)
((𝜑 ∧ (𝑥𝐴𝑦𝐵𝑧𝐶)) → 𝜓)       (𝜑 → ∀𝑥𝐴𝑦𝐵𝑧𝐶 𝜓)
 
Theoremralrimdvv 2554* Inference from Theorem 19.21 of [Margaris] p. 90. (Restricted quantifier version with double quantification.) (Contributed by NM, 1-Jun-2005.)
(𝜑 → (𝜓 → ((𝑥𝐴𝑦𝐵) → 𝜒)))       (𝜑 → (𝜓 → ∀𝑥𝐴𝑦𝐵 𝜒))
 
Theoremralrimdvva 2555* Inference from Theorem 19.21 of [Margaris] p. 90. (Restricted quantifier version with double quantification.) (Contributed by NM, 2-Feb-2008.)
((𝜑 ∧ (𝑥𝐴𝑦𝐵)) → (𝜓𝜒))       (𝜑 → (𝜓 → ∀𝑥𝐴𝑦𝐵 𝜒))
 
Theoremrgen2 2556* Generalization rule for restricted quantification. (Contributed by NM, 30-May-1999.)
((𝑥𝐴𝑦𝐵) → 𝜑)       𝑥𝐴𝑦𝐵 𝜑
 
Theoremrgen3 2557* Generalization rule for restricted quantification. (Contributed by NM, 12-Jan-2008.)
((𝑥𝐴𝑦𝐵𝑧𝐶) → 𝜑)       𝑥𝐴𝑦𝐵𝑧𝐶 𝜑
 
Theoremr19.21bi 2558 Inference from Theorem 19.21 of [Margaris] p. 90. (Restricted quantifier version.) (Contributed by NM, 20-Nov-1994.)
(𝜑 → ∀𝑥𝐴 𝜓)       ((𝜑𝑥𝐴) → 𝜓)
 
Theoremrspec2 2559 Specialization rule for restricted quantification. (Contributed by NM, 20-Nov-1994.)
𝑥𝐴𝑦𝐵 𝜑       ((𝑥𝐴𝑦𝐵) → 𝜑)
 
Theoremrspec3 2560 Specialization rule for restricted quantification. (Contributed by NM, 20-Nov-1994.)
𝑥𝐴𝑦𝐵𝑧𝐶 𝜑       ((𝑥𝐴𝑦𝐵𝑧𝐶) → 𝜑)
 
Theoremr19.21be 2561 Inference from Theorem 19.21 of [Margaris] p. 90. (Restricted quantifier version.) (Contributed by NM, 21-Nov-1994.)
(𝜑 → ∀𝑥𝐴 𝜓)       𝑥𝐴 (𝜑𝜓)
 
Theoremnrex 2562 Inference adding restricted existential quantifier to negated wff. (Contributed by NM, 16-Oct-2003.)
(𝑥𝐴 → ¬ 𝜓)        ¬ ∃𝑥𝐴 𝜓
 
Theoremnrexdv 2563* Deduction adding restricted existential quantifier to negated wff. (Contributed by NM, 16-Oct-2003.)
((𝜑𝑥𝐴) → ¬ 𝜓)       (𝜑 → ¬ ∃𝑥𝐴 𝜓)
 
Theoremrexim 2564 Theorem 19.22 of [Margaris] p. 90. (Restricted quantifier version.) (Contributed by NM, 22-Nov-1994.) (Proof shortened by Andrew Salmon, 30-May-2011.)
(∀𝑥𝐴 (𝜑𝜓) → (∃𝑥𝐴 𝜑 → ∃𝑥𝐴 𝜓))
 
Theoremreximia 2565 Inference quantifying both antecedent and consequent. (Contributed by NM, 10-Feb-1997.)
(𝑥𝐴 → (𝜑𝜓))       (∃𝑥𝐴 𝜑 → ∃𝑥𝐴 𝜓)
 
Theoremreximi2 2566 Inference quantifying both antecedent and consequent, based on Theorem 19.22 of [Margaris] p. 90. (Contributed by NM, 8-Nov-2004.)
((𝑥𝐴𝜑) → (𝑥𝐵𝜓))       (∃𝑥𝐴 𝜑 → ∃𝑥𝐵 𝜓)
 
Theoremreximi 2567 Inference quantifying both antecedent and consequent. (Contributed by NM, 18-Oct-1996.)
(𝜑𝜓)       (∃𝑥𝐴 𝜑 → ∃𝑥𝐴 𝜓)
 
Theoremreximdai 2568 Deduction from Theorem 19.22 of [Margaris] p. 90. (Restricted quantifier version.) (Contributed by NM, 31-Aug-1999.)
𝑥𝜑    &   (𝜑 → (𝑥𝐴 → (𝜓𝜒)))       (𝜑 → (∃𝑥𝐴 𝜓 → ∃𝑥𝐴 𝜒))
 
Theoremreximdv2 2569* Deduction quantifying both antecedent and consequent, based on Theorem 19.22 of [Margaris] p. 90. (Contributed by NM, 17-Sep-2003.)
(𝜑 → ((𝑥𝐴𝜓) → (𝑥𝐵𝜒)))       (𝜑 → (∃𝑥𝐴 𝜓 → ∃𝑥𝐵 𝜒))
 
Theoremreximdvai 2570* Deduction quantifying both antecedent and consequent, based on Theorem 19.22 of [Margaris] p. 90. (Contributed by NM, 14-Nov-2002.)
(𝜑 → (𝑥𝐴 → (𝜓𝜒)))       (𝜑 → (∃𝑥𝐴 𝜓 → ∃𝑥𝐴 𝜒))
 
Theoremreximdv 2571* Deduction from Theorem 19.22 of [Margaris] p. 90. (Restricted quantifier version with strong hypothesis.) (Contributed by NM, 24-Jun-1998.)
(𝜑 → (𝜓𝜒))       (𝜑 → (∃𝑥𝐴 𝜓 → ∃𝑥𝐴 𝜒))
 
Theoremreximdva 2572* Deduction quantifying both antecedent and consequent, based on Theorem 19.22 of [Margaris] p. 90. (Contributed by NM, 22-May-1999.)
((𝜑𝑥𝐴) → (𝜓𝜒))       (𝜑 → (∃𝑥𝐴 𝜓 → ∃𝑥𝐴 𝜒))
 
Theoremreximddv 2573* Deduction from Theorem 19.22 of [Margaris] p. 90. (Contributed by Thierry Arnoux, 7-Dec-2016.)
((𝜑 ∧ (𝑥𝐴𝜓)) → 𝜒)    &   (𝜑 → ∃𝑥𝐴 𝜓)       (𝜑 → ∃𝑥𝐴 𝜒)
 
Theoremreximssdv 2574* Derivation of a restricted existential quantification over a subset (the second hypothesis implies 𝐴𝐵), deduction form. (Contributed by AV, 21-Aug-2022.)
(𝜑 → ∃𝑥𝐵 𝜓)    &   ((𝜑 ∧ (𝑥𝐵𝜓)) → 𝑥𝐴)    &   ((𝜑 ∧ (𝑥𝐵𝜓)) → 𝜒)       (𝜑 → ∃𝑥𝐴 𝜒)
 
Theoremreximddv2 2575* Double deduction from Theorem 19.22 of [Margaris] p. 90. (Contributed by Thierry Arnoux, 15-Dec-2019.)
((((𝜑𝑥𝐴) ∧ 𝑦𝐵) ∧ 𝜓) → 𝜒)    &   (𝜑 → ∃𝑥𝐴𝑦𝐵 𝜓)       (𝜑 → ∃𝑥𝐴𝑦𝐵 𝜒)
 
Theoremr19.12 2576* Theorem 19.12 of [Margaris] p. 89 with restricted quantifiers. (Contributed by NM, 15-Oct-2003.) (Proof shortened by Andrew Salmon, 30-May-2011.)
(∃𝑥𝐴𝑦𝐵 𝜑 → ∀𝑦𝐵𝑥𝐴 𝜑)
 
Theoremr19.23t 2577 Closed theorem form of r19.23 2578. (Contributed by NM, 4-Mar-2013.) (Revised by Mario Carneiro, 8-Oct-2016.)
(Ⅎ𝑥𝜓 → (∀𝑥𝐴 (𝜑𝜓) ↔ (∃𝑥𝐴 𝜑𝜓)))
 
Theoremr19.23 2578 Theorem 19.23 of [Margaris] p. 90 with restricted quantifiers. (Contributed by NM, 22-Oct-2010.) (Proof shortened by Mario Carneiro, 8-Oct-2016.)
𝑥𝜓       (∀𝑥𝐴 (𝜑𝜓) ↔ (∃𝑥𝐴 𝜑𝜓))
 
Theoremr19.23v 2579* Theorem 19.23 of [Margaris] p. 90 with restricted quantifiers. (Contributed by NM, 31-Aug-1999.)
(∀𝑥𝐴 (𝜑𝜓) ↔ (∃𝑥𝐴 𝜑𝜓))
 
Theoremrexlimi 2580 Inference from Theorem 19.21 of [Margaris] p. 90. (Restricted quantifier version.) (Contributed by NM, 30-Nov-2003.) (Proof shortened by Andrew Salmon, 30-May-2011.)
𝑥𝜓    &   (𝑥𝐴 → (𝜑𝜓))       (∃𝑥𝐴 𝜑𝜓)
 
Theoremrexlimiv 2581* Inference from Theorem 19.23 of [Margaris] p. 90. (Restricted quantifier version.) (Contributed by NM, 20-Nov-1994.)
(𝑥𝐴 → (𝜑𝜓))       (∃𝑥𝐴 𝜑𝜓)
 
Theoremrexlimiva 2582* Inference from Theorem 19.23 of [Margaris] p. 90 (restricted quantifier version). (Contributed by NM, 18-Dec-2006.)
((𝑥𝐴𝜑) → 𝜓)       (∃𝑥𝐴 𝜑𝜓)
 
Theoremrexlimivw 2583* Weaker version of rexlimiv 2581. (Contributed by FL, 19-Sep-2011.)
(𝜑𝜓)       (∃𝑥𝐴 𝜑𝜓)
 
Theoremrexlimd 2584 Deduction from Theorem 19.23 of [Margaris] p. 90 (restricted quantifier version). (Contributed by NM, 27-May-1998.) (Proof shortened by Andrew Salmon, 30-May-2011.)
𝑥𝜑    &   𝑥𝜒    &   (𝜑 → (𝑥𝐴 → (𝜓𝜒)))       (𝜑 → (∃𝑥𝐴 𝜓𝜒))
 
Theoremrexlimd2 2585 Version of rexlimd 2584 with deduction version of second hypothesis. (Contributed by NM, 21-Jul-2013.) (Revised by Mario Carneiro, 8-Oct-2016.)
𝑥𝜑    &   (𝜑 → Ⅎ𝑥𝜒)    &   (𝜑 → (𝑥𝐴 → (𝜓𝜒)))       (𝜑 → (∃𝑥𝐴 𝜓𝜒))
 
Theoremrexlimdv 2586* Inference from Theorem 19.23 of [Margaris] p. 90 (restricted quantifier version). (Contributed by NM, 14-Nov-2002.) (Proof shortened by Eric Schmidt, 22-Dec-2006.)
(𝜑 → (𝑥𝐴 → (𝜓𝜒)))       (𝜑 → (∃𝑥𝐴 𝜓𝜒))
 
Theoremrexlimdva 2587* Inference from Theorem 19.23 of [Margaris] p. 90 (restricted quantifier version). (Contributed by NM, 20-Jan-2007.)
((𝜑𝑥𝐴) → (𝜓𝜒))       (𝜑 → (∃𝑥𝐴 𝜓𝜒))
 
Theoremrexlimdvaa 2588* Inference from Theorem 19.23 of [Margaris] p. 90 (restricted quantifier version). (Contributed by Mario Carneiro, 15-Jun-2016.)
((𝜑 ∧ (𝑥𝐴𝜓)) → 𝜒)       (𝜑 → (∃𝑥𝐴 𝜓𝜒))
 
Theoremrexlimdv3a 2589* Inference from Theorem 19.23 of [Margaris] p. 90 (restricted quantifier version). Frequently-used variant of rexlimdv 2586. (Contributed by NM, 7-Jun-2015.)
((𝜑𝑥𝐴𝜓) → 𝜒)       (𝜑 → (∃𝑥𝐴 𝜓𝜒))
 
Theoremrexlimdva2 2590* Inference from Theorem 19.23 of [Margaris] p. 90 (restricted quantifier version). (Contributed by Glauco Siliprandi, 2-Jan-2022.)
(((𝜑𝑥𝐴) ∧ 𝜓) → 𝜒)       (𝜑 → (∃𝑥𝐴 𝜓𝜒))
 
Theoremrexlimdvw 2591* Inference from Theorem 19.23 of [Margaris] p. 90 (restricted quantifier version). (Contributed by NM, 18-Jun-2014.)
(𝜑 → (𝜓𝜒))       (𝜑 → (∃𝑥𝐴 𝜓𝜒))
 
Theoremrexlimddv 2592* Restricted existential elimination rule of natural deduction. (Contributed by Mario Carneiro, 15-Jun-2016.)
(𝜑 → ∃𝑥𝐴 𝜓)    &   ((𝜑 ∧ (𝑥𝐴𝜓)) → 𝜒)       (𝜑𝜒)
 
Theoremrexlimivv 2593* Inference from Theorem 19.23 of [Margaris] p. 90 (restricted quantifier version). (Contributed by NM, 17-Feb-2004.)
((𝑥𝐴𝑦𝐵) → (𝜑𝜓))       (∃𝑥𝐴𝑦𝐵 𝜑𝜓)
 
Theoremrexlimdvv 2594* Inference from Theorem 19.23 of [Margaris] p. 90. (Restricted quantifier version.) (Contributed by NM, 22-Jul-2004.)
(𝜑 → ((𝑥𝐴𝑦𝐵) → (𝜓𝜒)))       (𝜑 → (∃𝑥𝐴𝑦𝐵 𝜓𝜒))
 
Theoremrexlimdvva 2595* Inference from Theorem 19.23 of [Margaris] p. 90. (Restricted quantifier version.) (Contributed by NM, 18-Jun-2014.)
((𝜑 ∧ (𝑥𝐴𝑦𝐵)) → (𝜓𝜒))       (𝜑 → (∃𝑥𝐴𝑦𝐵 𝜓𝜒))
 
Theoremr19.26 2596 Theorem 19.26 of [Margaris] p. 90 with restricted quantifiers. (Contributed by NM, 28-Jan-1997.) (Proof shortened by Andrew Salmon, 30-May-2011.)
(∀𝑥𝐴 (𝜑𝜓) ↔ (∀𝑥𝐴 𝜑 ∧ ∀𝑥𝐴 𝜓))
 
Theoremr19.27v 2597* Restricted quantitifer version of one direction of 19.27 1554. (The other direction holds when 𝐴 is inhabited, see r19.27mv 3511.) (Contributed by NM, 3-Jun-2004.) (Proof shortened by Andrew Salmon, 30-May-2011.) (Proof shortened by Wolf Lammen, 17-Jun-2023.)
((∀𝑥𝐴 𝜑𝜓) → ∀𝑥𝐴 (𝜑𝜓))
 
Theoremr19.28v 2598* Restricted quantifier version of one direction of 19.28 1556. (The other direction holds when 𝐴 is inhabited, see r19.28mv 3507.) (Contributed by NM, 2-Apr-2004.) (Proof shortened by Wolf Lammen, 17-Jun-2023.)
((𝜑 ∧ ∀𝑥𝐴 𝜓) → ∀𝑥𝐴 (𝜑𝜓))
 
Theoremr19.26-2 2599 Theorem 19.26 of [Margaris] p. 90 with 2 restricted quantifiers. (Contributed by NM, 10-Aug-2004.)
(∀𝑥𝐴𝑦𝐵 (𝜑𝜓) ↔ (∀𝑥𝐴𝑦𝐵 𝜑 ∧ ∀𝑥𝐴𝑦𝐵 𝜓))
 
Theoremr19.26-3 2600 Theorem 19.26 of [Margaris] p. 90 with 3 restricted quantifiers. (Contributed by FL, 22-Nov-2010.)
(∀𝑥𝐴 (𝜑𝜓𝜒) ↔ (∀𝑥𝐴 𝜑 ∧ ∀𝑥𝐴 𝜓 ∧ ∀𝑥𝐴 𝜒))
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14113
  Copyright terms: Public domain < Previous  Next >