Theorem List for Intuitionistic Logic Explorer - 2501-2600   *Has distinct variable
 group(s)
| Type | Label | Description | 
| Statement | 
|   | 
| Theorem | ralbid2 2501 | 
Formula-building rule for restricted universal quantifier (deduction
       form).  (Contributed by BJ, 14-Jul-2024.)
 | 
| ⊢ Ⅎ𝑥𝜑   
 &   ⊢ (𝜑 → ((𝑥 ∈ 𝐴 → 𝜓) ↔ (𝑥 ∈ 𝐵 → 𝜒)))    ⇒   ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥 ∈ 𝐵 𝜒)) | 
|   | 
| Theorem | rexbid2 2502 | 
Formula-building rule for restricted existential quantifier (deduction
       form).  (Contributed by BJ, 14-Jul-2024.)
 | 
| ⊢ Ⅎ𝑥𝜑   
 &   ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝜓) ↔ (𝑥 ∈ 𝐵 ∧ 𝜒)))    ⇒   ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 ↔ ∃𝑥 ∈ 𝐵 𝜒)) | 
|   | 
| Theorem | ralbii 2503 | 
Inference adding restricted universal quantifier to both sides of an
       equivalence.  (Contributed by NM, 23-Nov-1994.)  (Revised by Mario
       Carneiro, 17-Oct-2016.)
 | 
| ⊢ (𝜑 ↔ 𝜓)    ⇒   ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐴 𝜓) | 
|   | 
| Theorem | rexbii 2504 | 
Inference adding restricted existential quantifier to both sides of an
       equivalence.  (Contributed by NM, 23-Nov-1994.)  (Revised by Mario
       Carneiro, 17-Oct-2016.)
 | 
| ⊢ (𝜑 ↔ 𝜓)    ⇒   ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥 ∈ 𝐴 𝜓) | 
|   | 
| Theorem | 2ralbii 2505 | 
Inference adding two restricted universal quantifiers to both sides of
       an equivalence.  (Contributed by NM, 1-Aug-2004.)
 | 
| ⊢ (𝜑 ↔ 𝜓)    ⇒   ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜓) | 
|   | 
| Theorem | 2rexbii 2506 | 
Inference adding two restricted existential quantifiers to both sides of
       an equivalence.  (Contributed by NM, 11-Nov-1995.)
 | 
| ⊢ (𝜑 ↔ 𝜓)    ⇒   ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜓) | 
|   | 
| Theorem | ralbii2 2507 | 
Inference adding different restricted universal quantifiers to each side
       of an equivalence.  (Contributed by NM, 15-Aug-2005.)
 | 
| ⊢ ((𝑥 ∈ 𝐴 → 𝜑) ↔ (𝑥 ∈ 𝐵 → 𝜓))    ⇒   ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐵 𝜓) | 
|   | 
| Theorem | rexbii2 2508 | 
Inference adding different restricted existential quantifiers to each
       side of an equivalence.  (Contributed by NM, 4-Feb-2004.)
 | 
| ⊢ ((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ (𝑥 ∈ 𝐵 ∧ 𝜓))    ⇒   ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥 ∈ 𝐵 𝜓) | 
|   | 
| Theorem | raleqbii 2509 | 
Equality deduction for restricted universal quantifier, changing both
       formula and quantifier domain.  Inference form.  (Contributed by David
       Moews, 1-May-2017.)
 | 
| ⊢ 𝐴 = 𝐵   
 &   ⊢ (𝜓 ↔ 𝜒)    ⇒   ⊢ (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥 ∈ 𝐵 𝜒) | 
|   | 
| Theorem | rexeqbii 2510 | 
Equality deduction for restricted existential quantifier, changing both
       formula and quantifier domain.  Inference form.  (Contributed by David
       Moews, 1-May-2017.)
 | 
| ⊢ 𝐴 = 𝐵   
 &   ⊢ (𝜓 ↔ 𝜒)    ⇒   ⊢ (∃𝑥 ∈ 𝐴 𝜓 ↔ ∃𝑥 ∈ 𝐵 𝜒) | 
|   | 
| Theorem | ralbiia 2511 | 
Inference adding restricted universal quantifier to both sides of an
       equivalence.  (Contributed by NM, 26-Nov-2000.)
 | 
| ⊢ (𝑥 ∈ 𝐴 → (𝜑 ↔ 𝜓))    ⇒   ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐴 𝜓) | 
|   | 
| Theorem | rexbiia 2512 | 
Inference adding restricted existential quantifier to both sides of an
       equivalence.  (Contributed by NM, 26-Oct-1999.)
 | 
| ⊢ (𝑥 ∈ 𝐴 → (𝜑 ↔ 𝜓))    ⇒   ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥 ∈ 𝐴 𝜓) | 
|   | 
| Theorem | 2rexbiia 2513* | 
Inference adding two restricted existential quantifiers to both sides of
       an equivalence.  (Contributed by NM, 1-Aug-2004.)
 | 
| ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → (𝜑 ↔ 𝜓))    ⇒   ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜓) | 
|   | 
| Theorem | r2alf 2514* | 
Double restricted universal quantification.  (Contributed by Mario
       Carneiro, 14-Oct-2016.)
 | 
| ⊢ Ⅎ𝑦𝐴    ⇒   ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 ↔ ∀𝑥∀𝑦((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝜑)) | 
|   | 
| Theorem | r2exf 2515* | 
Double restricted existential quantification.  (Contributed by Mario
       Carneiro, 14-Oct-2016.)
 | 
| ⊢ Ⅎ𝑦𝐴    ⇒   ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 ↔ ∃𝑥∃𝑦((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝜑)) | 
|   | 
| Theorem | r2al 2516* | 
Double restricted universal quantification.  (Contributed by NM,
       19-Nov-1995.)
 | 
| ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 ↔ ∀𝑥∀𝑦((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝜑)) | 
|   | 
| Theorem | r2ex 2517* | 
Double restricted existential quantification.  (Contributed by NM,
       11-Nov-1995.)
 | 
| ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 ↔ ∃𝑥∃𝑦((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝜑)) | 
|   | 
| Theorem | 2ralbida 2518* | 
Formula-building rule for restricted universal quantifier (deduction
       form).  (Contributed by NM, 24-Feb-2004.)
 | 
| ⊢ Ⅎ𝑥𝜑   
 &   ⊢ Ⅎ𝑦𝜑   
 &   ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → (𝜓 ↔ 𝜒))    ⇒   ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜓 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜒)) | 
|   | 
| Theorem | 2ralbidva 2519* | 
Formula-building rule for restricted universal quantifiers (deduction
       form).  (Contributed by NM, 4-Mar-1997.)
 | 
| ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → (𝜓 ↔ 𝜒))    ⇒   ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜓 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜒)) | 
|   | 
| Theorem | 2rexbidva 2520* | 
Formula-building rule for restricted existential quantifiers (deduction
       form).  (Contributed by NM, 15-Dec-2004.)
 | 
| ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → (𝜓 ↔ 𝜒))    ⇒   ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜓 ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜒)) | 
|   | 
| Theorem | 2ralbidv 2521* | 
Formula-building rule for restricted universal quantifiers (deduction
       form).  (Contributed by NM, 28-Jan-2006.)  (Revised by Szymon
       Jaroszewicz, 16-Mar-2007.)
 | 
| ⊢ (𝜑 → (𝜓 ↔ 𝜒))    ⇒   ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜓 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜒)) | 
|   | 
| Theorem | 2rexbidv 2522* | 
Formula-building rule for restricted existential quantifiers (deduction
       form).  (Contributed by NM, 28-Jan-2006.)
 | 
| ⊢ (𝜑 → (𝜓 ↔ 𝜒))    ⇒   ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜓 ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜒)) | 
|   | 
| Theorem | rexralbidv 2523* | 
Formula-building rule for restricted quantifiers (deduction form).
       (Contributed by NM, 28-Jan-2006.)
 | 
| ⊢ (𝜑 → (𝜓 ↔ 𝜒))    ⇒   ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜓 ↔ ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜒)) | 
|   | 
| Theorem | ralinexa 2524 | 
A transformation of restricted quantifiers and logical connectives.
     (Contributed by NM, 4-Sep-2005.)
 | 
| ⊢ (∀𝑥 ∈ 𝐴 (𝜑 → ¬ 𝜓) ↔ ¬ ∃𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓)) | 
|   | 
| Theorem | risset 2525* | 
Two ways to say "𝐴 belongs to 𝐵".  (Contributed by
NM,
       22-Nov-1994.)
 | 
| ⊢ (𝐴 ∈ 𝐵 ↔ ∃𝑥 ∈ 𝐵 𝑥 = 𝐴) | 
|   | 
| Theorem | hbral 2526 | 
Bound-variable hypothesis builder for restricted quantification.
       (Contributed by NM, 1-Sep-1999.)  (Revised by David Abernethy,
       13-Dec-2009.)
 | 
| ⊢ (𝑦 ∈ 𝐴 → ∀𝑥 𝑦 ∈ 𝐴)   
 &   ⊢ (𝜑 → ∀𝑥𝜑)    ⇒   ⊢ (∀𝑦 ∈ 𝐴 𝜑 → ∀𝑥∀𝑦 ∈ 𝐴 𝜑) | 
|   | 
| Theorem | hbra1 2527 | 
𝑥
is not free in ∀𝑥 ∈ 𝐴𝜑.  (Contributed by NM,
     18-Oct-1996.)
 | 
| ⊢ (∀𝑥 ∈ 𝐴 𝜑 → ∀𝑥∀𝑥 ∈ 𝐴 𝜑) | 
|   | 
| Theorem | nfra1 2528 | 
𝑥
is not free in ∀𝑥 ∈ 𝐴𝜑.  (Contributed by NM, 18-Oct-1996.)
     (Revised by Mario Carneiro, 7-Oct-2016.)
 | 
| ⊢ Ⅎ𝑥∀𝑥 ∈ 𝐴 𝜑 | 
|   | 
| Theorem | nfraldw 2529* | 
Not-free for restricted universal quantification where 𝑥 and 𝑦
       are distinct.  See nfraldya 2532 for a version with 𝑦 and
𝐴
       distinct instead.  (Contributed by NM, 15-Feb-2013.)  (Revised by GG,
       10-Jan-2024.)
 | 
| ⊢ Ⅎ𝑦𝜑   
 &   ⊢ (𝜑 → Ⅎ𝑥𝐴)   
 &   ⊢ (𝜑 → Ⅎ𝑥𝜓)    ⇒   ⊢ (𝜑 → Ⅎ𝑥∀𝑦 ∈ 𝐴 𝜓) | 
|   | 
| Theorem | nfraldxy 2530* | 
Old name for nfraldw 2529.  (Contributed by Jim Kingdon, 29-May-2018.)
       (New usage is discouraged.)
 | 
| ⊢ Ⅎ𝑦𝜑   
 &   ⊢ (𝜑 → Ⅎ𝑥𝐴)   
 &   ⊢ (𝜑 → Ⅎ𝑥𝜓)    ⇒   ⊢ (𝜑 → Ⅎ𝑥∀𝑦 ∈ 𝐴 𝜓) | 
|   | 
| Theorem | nfrexdxy 2531* | 
Not-free for restricted existential quantification where 𝑥 and 𝑦
       are distinct.  See nfrexdya 2533 for a version with 𝑦 and
𝐴
       distinct instead.  (Contributed by Jim Kingdon, 30-May-2018.)
 | 
| ⊢ Ⅎ𝑦𝜑   
 &   ⊢ (𝜑 → Ⅎ𝑥𝐴)   
 &   ⊢ (𝜑 → Ⅎ𝑥𝜓)    ⇒   ⊢ (𝜑 → Ⅎ𝑥∃𝑦 ∈ 𝐴 𝜓) | 
|   | 
| Theorem | nfraldya 2532* | 
Not-free for restricted universal quantification where 𝑦 and 𝐴
       are distinct.  See nfraldxy 2530 for a version with 𝑥 and
𝑦
       distinct instead.  (Contributed by Jim Kingdon, 30-May-2018.)
 | 
| ⊢ Ⅎ𝑦𝜑   
 &   ⊢ (𝜑 → Ⅎ𝑥𝐴)   
 &   ⊢ (𝜑 → Ⅎ𝑥𝜓)    ⇒   ⊢ (𝜑 → Ⅎ𝑥∀𝑦 ∈ 𝐴 𝜓) | 
|   | 
| Theorem | nfrexdya 2533* | 
Not-free for restricted existential quantification where 𝑦 and 𝐴
       are distinct.  See nfrexdxy 2531 for a version with 𝑥 and
𝑦
       distinct instead.  (Contributed by Jim Kingdon, 30-May-2018.)
 | 
| ⊢ Ⅎ𝑦𝜑   
 &   ⊢ (𝜑 → Ⅎ𝑥𝐴)   
 &   ⊢ (𝜑 → Ⅎ𝑥𝜓)    ⇒   ⊢ (𝜑 → Ⅎ𝑥∃𝑦 ∈ 𝐴 𝜓) | 
|   | 
| Theorem | nfralw 2534* | 
Bound-variable hypothesis builder for restricted quantification.  See
       nfralya 2537 for a version with 𝑦 and 𝐴
distinct instead of 𝑥
       and 𝑦.  (Contributed by NM, 1-Sep-1999.) 
(Revised by GG,
       10-Jan-2024.)
 | 
| ⊢ Ⅎ𝑥𝐴   
 &   ⊢ Ⅎ𝑥𝜑    ⇒   ⊢ Ⅎ𝑥∀𝑦 ∈ 𝐴 𝜑 | 
|   | 
| Theorem | nfralxy 2535* | 
Old name for nfralw 2534.  (Contributed by Jim Kingdon, 30-May-2018.)
       (New usage is discouraged.)
 | 
| ⊢ Ⅎ𝑥𝐴   
 &   ⊢ Ⅎ𝑥𝜑    ⇒   ⊢ Ⅎ𝑥∀𝑦 ∈ 𝐴 𝜑 | 
|   | 
| Theorem | nfrexw 2536* | 
Not-free for restricted existential quantification where 𝑥 and 𝑦
       are distinct.  See nfrexya 2538 for a version with 𝑦 and 𝐴
distinct
       instead.  (Contributed by Jim Kingdon, 30-May-2018.)
 | 
| ⊢ Ⅎ𝑥𝐴   
 &   ⊢ Ⅎ𝑥𝜑    ⇒   ⊢ Ⅎ𝑥∃𝑦 ∈ 𝐴 𝜑 | 
|   | 
| Theorem | nfralya 2537* | 
Not-free for restricted universal quantification where 𝑦 and 𝐴
       are distinct.  See nfralxy 2535 for a version with 𝑥 and 𝑦
distinct
       instead.  (Contributed by Jim Kingdon, 3-Jun-2018.)
 | 
| ⊢ Ⅎ𝑥𝐴   
 &   ⊢ Ⅎ𝑥𝜑    ⇒   ⊢ Ⅎ𝑥∀𝑦 ∈ 𝐴 𝜑 | 
|   | 
| Theorem | nfrexya 2538* | 
Not-free for restricted existential quantification where 𝑦 and 𝐴
       are distinct.  See nfrexw 2536 for a version with 𝑥 and 𝑦
distinct
       instead.  (Contributed by Jim Kingdon, 3-Jun-2018.)
 | 
| ⊢ Ⅎ𝑥𝐴   
 &   ⊢ Ⅎ𝑥𝜑    ⇒   ⊢ Ⅎ𝑥∃𝑦 ∈ 𝐴 𝜑 | 
|   | 
| Theorem | nfra2xy 2539* | 
Not-free given two restricted quantifiers.  (Contributed by Jim Kingdon,
       20-Aug-2018.)
 | 
| ⊢ Ⅎ𝑦∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 | 
|   | 
| Theorem | nfre1 2540 | 
𝑥
is not free in ∃𝑥 ∈ 𝐴𝜑.  (Contributed by NM, 19-Mar-1997.)
     (Revised by Mario Carneiro, 7-Oct-2016.)
 | 
| ⊢ Ⅎ𝑥∃𝑥 ∈ 𝐴 𝜑 | 
|   | 
| Theorem | r3al 2541* | 
Triple restricted universal quantification.  (Contributed by NM,
       19-Nov-1995.)
 | 
| ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐶 𝜑 ↔ ∀𝑥∀𝑦∀𝑧((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐶) → 𝜑)) | 
|   | 
| Theorem | alral 2542 | 
Universal quantification implies restricted quantification.  (Contributed
     by NM, 20-Oct-2006.)
 | 
| ⊢ (∀𝑥𝜑 → ∀𝑥 ∈ 𝐴 𝜑) | 
|   | 
| Theorem | rexex 2543 | 
Restricted existence implies existence.  (Contributed by NM,
     11-Nov-1995.)
 | 
| ⊢ (∃𝑥 ∈ 𝐴 𝜑 → ∃𝑥𝜑) | 
|   | 
| Theorem | rsp 2544 | 
Restricted specialization.  (Contributed by NM, 17-Oct-1996.)
 | 
| ⊢ (∀𝑥 ∈ 𝐴 𝜑 → (𝑥 ∈ 𝐴 → 𝜑)) | 
|   | 
| Theorem | rspa 2545 | 
Restricted specialization.  (Contributed by Glauco Siliprandi,
     11-Dec-2019.)
 | 
| ⊢ ((∀𝑥 ∈ 𝐴 𝜑 ∧ 𝑥 ∈ 𝐴) → 𝜑) | 
|   | 
| Theorem | rspe 2546 | 
Restricted specialization.  (Contributed by NM, 12-Oct-1999.)
 | 
| ⊢ ((𝑥 ∈ 𝐴 ∧ 𝜑) → ∃𝑥 ∈ 𝐴 𝜑) | 
|   | 
| Theorem | rsp2 2547 | 
Restricted specialization.  (Contributed by NM, 11-Feb-1997.)
 | 
| ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝜑)) | 
|   | 
| Theorem | rsp2e 2548 | 
Restricted specialization.  (Contributed by FL, 4-Jun-2012.)
 | 
| ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝜑) → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑) | 
|   | 
| Theorem | rspec 2549 | 
Specialization rule for restricted quantification.  (Contributed by NM,
       19-Nov-1994.)
 | 
| ⊢ ∀𝑥 ∈ 𝐴 𝜑    ⇒   ⊢ (𝑥 ∈ 𝐴 → 𝜑) | 
|   | 
| Theorem | rgen 2550 | 
Generalization rule for restricted quantification.  (Contributed by NM,
       19-Nov-1994.)
 | 
| ⊢ (𝑥 ∈ 𝐴 → 𝜑)    ⇒   ⊢ ∀𝑥 ∈ 𝐴 𝜑 | 
|   | 
| Theorem | rgen2a 2551* | 
Generalization rule for restricted quantification.  Note that 𝑥 and
       𝑦 are not required to be disjoint. 
This proof illustrates the use
       of dvelim 2036.  Usage of rgen2 2583 instead is highly encouraged.
       (Contributed by NM, 23-Nov-1994.)  (Proof rewritten by Jim Kingdon,
       1-Jun-2018.)  (New usage is discouraged.)
 | 
| ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → 𝜑)    ⇒   ⊢ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝜑 | 
|   | 
| Theorem | rgenw 2552 | 
Generalization rule for restricted quantification.  (Contributed by NM,
       18-Jun-2014.)
 | 
| ⊢ 𝜑    ⇒   ⊢ ∀𝑥 ∈ 𝐴 𝜑 | 
|   | 
| Theorem | rgen2w 2553 | 
Generalization rule for restricted quantification.  Note that 𝑥 and
       𝑦 needn't be distinct.  (Contributed by
NM, 18-Jun-2014.)
 | 
| ⊢ 𝜑    ⇒   ⊢ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 | 
|   | 
| Theorem | mprg 2554 | 
Modus ponens combined with restricted generalization.  (Contributed by
       NM, 10-Aug-2004.)
 | 
| ⊢ (∀𝑥 ∈ 𝐴 𝜑 → 𝜓)   
 &   ⊢ (𝑥 ∈ 𝐴 → 𝜑)    ⇒   ⊢ 𝜓 | 
|   | 
| Theorem | mprgbir 2555 | 
Modus ponens on biconditional combined with restricted generalization.
       (Contributed by NM, 21-Mar-2004.)
 | 
| ⊢ (𝜑 ↔ ∀𝑥 ∈ 𝐴 𝜓)   
 &   ⊢ (𝑥 ∈ 𝐴 → 𝜓)    ⇒   ⊢ 𝜑 | 
|   | 
| Theorem | ralim 2556 | 
Distribution of restricted quantification over implication.  (Contributed
     by NM, 9-Feb-1997.)
 | 
| ⊢ (∀𝑥 ∈ 𝐴 (𝜑 → 𝜓) → (∀𝑥 ∈ 𝐴 𝜑 → ∀𝑥 ∈ 𝐴 𝜓)) | 
|   | 
| Theorem | ralimi2 2557 | 
Inference quantifying both antecedent and consequent.  (Contributed by
       NM, 22-Feb-2004.)
 | 
| ⊢ ((𝑥 ∈ 𝐴 → 𝜑) → (𝑥 ∈ 𝐵 → 𝜓))    ⇒   ⊢ (∀𝑥 ∈ 𝐴 𝜑 → ∀𝑥 ∈ 𝐵 𝜓) | 
|   | 
| Theorem | ralimia 2558 | 
Inference quantifying both antecedent and consequent.  (Contributed by
       NM, 19-Jul-1996.)
 | 
| ⊢ (𝑥 ∈ 𝐴 → (𝜑 → 𝜓))    ⇒   ⊢ (∀𝑥 ∈ 𝐴 𝜑 → ∀𝑥 ∈ 𝐴 𝜓) | 
|   | 
| Theorem | ralimiaa 2559 | 
Inference quantifying both antecedent and consequent.  (Contributed by
       NM, 4-Aug-2007.)
 | 
| ⊢ ((𝑥 ∈ 𝐴 ∧ 𝜑) → 𝜓)    ⇒   ⊢ (∀𝑥 ∈ 𝐴 𝜑 → ∀𝑥 ∈ 𝐴 𝜓) | 
|   | 
| Theorem | ralimi 2560 | 
Inference quantifying both antecedent and consequent, with strong
       hypothesis.  (Contributed by NM, 4-Mar-1997.)
 | 
| ⊢ (𝜑 → 𝜓)    ⇒   ⊢ (∀𝑥 ∈ 𝐴 𝜑 → ∀𝑥 ∈ 𝐴 𝜓) | 
|   | 
| Theorem | 2ralimi 2561 | 
Inference quantifying both antecedent and consequent two times, with
       strong hypothesis.  (Contributed by AV, 3-Dec-2021.)
 | 
| ⊢ (𝜑 → 𝜓)    ⇒   ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜓) | 
|   | 
| Theorem | ral2imi 2562 | 
Inference quantifying antecedent, nested antecedent, and consequent,
       with a strong hypothesis.  (Contributed by NM, 19-Dec-2006.)
 | 
| ⊢ (𝜑 → (𝜓 → 𝜒))    ⇒   ⊢ (∀𝑥 ∈ 𝐴 𝜑 → (∀𝑥 ∈ 𝐴 𝜓 → ∀𝑥 ∈ 𝐴 𝜒)) | 
|   | 
| Theorem | ralimdaa 2563 | 
Deduction quantifying both antecedent and consequent, based on Theorem
       19.20 of [Margaris] p. 90. 
(Contributed by NM, 22-Sep-2003.)
 | 
| ⊢ Ⅎ𝑥𝜑   
 &   ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 → 𝜒))    ⇒   ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 → ∀𝑥 ∈ 𝐴 𝜒)) | 
|   | 
| Theorem | ralimdva 2564* | 
Deduction quantifying both antecedent and consequent, based on Theorem
       19.20 of [Margaris] p. 90. 
(Contributed by NM, 22-May-1999.)
 | 
| ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 → 𝜒))    ⇒   ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 → ∀𝑥 ∈ 𝐴 𝜒)) | 
|   | 
| Theorem | ralimdv 2565* | 
Deduction quantifying both antecedent and consequent, based on Theorem
       19.20 of [Margaris] p. 90. 
(Contributed by NM, 8-Oct-2003.)
 | 
| ⊢ (𝜑 → (𝜓 → 𝜒))    ⇒   ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 → ∀𝑥 ∈ 𝐴 𝜒)) | 
|   | 
| Theorem | ralimdvva 2566* | 
Deduction doubly quantifying both antecedent and consequent, based on
       Theorem 19.20 of [Margaris] p. 90 (alim 1471).  (Contributed by AV,
       27-Nov-2019.)
 | 
| ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → (𝜓 → 𝜒))    ⇒   ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜓 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜒)) | 
|   | 
| Theorem | ralimdv2 2567* | 
Inference quantifying both antecedent and consequent.  (Contributed by
       NM, 1-Feb-2005.)
 | 
| ⊢ (𝜑 → ((𝑥 ∈ 𝐴 → 𝜓) → (𝑥 ∈ 𝐵 → 𝜒)))    ⇒   ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 → ∀𝑥 ∈ 𝐵 𝜒)) | 
|   | 
| Theorem | ralrimi 2568 | 
Inference from Theorem 19.21 of [Margaris] p.
90 (restricted quantifier
       version).  (Contributed by NM, 10-Oct-1999.)
 | 
| ⊢ Ⅎ𝑥𝜑   
 &   ⊢ (𝜑 → (𝑥 ∈ 𝐴 → 𝜓))    ⇒   ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝜓) | 
|   | 
| Theorem | ralrimiv 2569* | 
Inference from Theorem 19.21 of [Margaris] p.
90.  (Restricted
       quantifier version.)  (Contributed by NM, 22-Nov-1994.)
 | 
| ⊢ (𝜑 → (𝑥 ∈ 𝐴 → 𝜓))    ⇒   ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝜓) | 
|   | 
| Theorem | ralrimiva 2570* | 
Inference from Theorem 19.21 of [Margaris] p.
90.  (Restricted
       quantifier version.)  (Contributed by NM, 2-Jan-2006.)
 | 
| ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝜓)    ⇒   ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝜓) | 
|   | 
| Theorem | ralrimivw 2571* | 
Inference from Theorem 19.21 of [Margaris] p.
90.  (Restricted
       quantifier version.)  (Contributed by NM, 18-Jun-2014.)
 | 
| ⊢ (𝜑 → 𝜓)    ⇒   ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝜓) | 
|   | 
| Theorem | r19.21t 2572 | 
Theorem 19.21 of [Margaris] p. 90 with
restricted quantifiers (closed
     theorem version).  (Contributed by NM, 1-Mar-2008.)
 | 
| ⊢ (Ⅎ𝑥𝜑 → (∀𝑥 ∈ 𝐴 (𝜑 → 𝜓) ↔ (𝜑 → ∀𝑥 ∈ 𝐴 𝜓))) | 
|   | 
| Theorem | r19.21 2573 | 
Theorem 19.21 of [Margaris] p. 90 with
restricted quantifiers.
       (Contributed by Scott Fenton, 30-Mar-2011.)
 | 
| ⊢ Ⅎ𝑥𝜑    ⇒   ⊢ (∀𝑥 ∈ 𝐴 (𝜑 → 𝜓) ↔ (𝜑 → ∀𝑥 ∈ 𝐴 𝜓)) | 
|   | 
| Theorem | r19.21v 2574* | 
Theorem 19.21 of [Margaris] p. 90 with
restricted quantifiers.
       (Contributed by NM, 15-Oct-2003.)  (Proof shortened by Andrew Salmon,
       30-May-2011.)
 | 
| ⊢ (∀𝑥 ∈ 𝐴 (𝜑 → 𝜓) ↔ (𝜑 → ∀𝑥 ∈ 𝐴 𝜓)) | 
|   | 
| Theorem | ralrimd 2575 | 
Inference from Theorem 19.21 of [Margaris] p.
90.  (Restricted
       quantifier version.)  (Contributed by NM, 16-Feb-2004.)
 | 
| ⊢ Ⅎ𝑥𝜑   
 &   ⊢ Ⅎ𝑥𝜓   
 &   ⊢ (𝜑 → (𝜓 → (𝑥 ∈ 𝐴 → 𝜒)))    ⇒   ⊢ (𝜑 → (𝜓 → ∀𝑥 ∈ 𝐴 𝜒)) | 
|   | 
| Theorem | ralrimdv 2576* | 
Inference from Theorem 19.21 of [Margaris] p.
90.  (Restricted
       quantifier version.)  (Contributed by NM, 27-May-1998.)
 | 
| ⊢ (𝜑 → (𝜓 → (𝑥 ∈ 𝐴 → 𝜒)))    ⇒   ⊢ (𝜑 → (𝜓 → ∀𝑥 ∈ 𝐴 𝜒)) | 
|   | 
| Theorem | ralrimdva 2577* | 
Inference from Theorem 19.21 of [Margaris] p.
90.  (Restricted
       quantifier version.)  (Contributed by NM, 2-Feb-2008.)
 | 
| ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 → 𝜒))    ⇒   ⊢ (𝜑 → (𝜓 → ∀𝑥 ∈ 𝐴 𝜒)) | 
|   | 
| Theorem | ralrimivv 2578* | 
Inference from Theorem 19.21 of [Margaris] p.
90.  (Restricted
       quantifier version with double quantification.)  (Contributed by NM,
       24-Jul-2004.)
 | 
| ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝜓))    ⇒   ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜓) | 
|   | 
| Theorem | ralrimivva 2579* | 
Inference from Theorem 19.21 of [Margaris] p.
90.  (Restricted
       quantifier version with double quantification.)  (Contributed by Jeff
       Madsen, 19-Jun-2011.)
 | 
| ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → 𝜓)    ⇒   ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜓) | 
|   | 
| Theorem | ralrimivvva 2580* | 
Inference from Theorem 19.21 of [Margaris] p.
90.  (Restricted
       quantifier version with triple quantification.)  (Contributed by Mario
       Carneiro, 9-Jul-2014.)
 | 
| ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐶)) → 𝜓)    ⇒   ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐶 𝜓) | 
|   | 
| Theorem | ralrimdvv 2581* | 
Inference from Theorem 19.21 of [Margaris] p.
90.  (Restricted
       quantifier version with double quantification.)  (Contributed by NM,
       1-Jun-2005.)
 | 
| ⊢ (𝜑 → (𝜓 → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝜒)))    ⇒   ⊢ (𝜑 → (𝜓 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜒)) | 
|   | 
| Theorem | ralrimdvva 2582* | 
Inference from Theorem 19.21 of [Margaris] p.
90.  (Restricted
       quantifier version with double quantification.)  (Contributed by NM,
       2-Feb-2008.)
 | 
| ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → (𝜓 → 𝜒))    ⇒   ⊢ (𝜑 → (𝜓 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜒)) | 
|   | 
| Theorem | rgen2 2583* | 
Generalization rule for restricted quantification.  (Contributed by NM,
       30-May-1999.)
 | 
| ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝜑)    ⇒   ⊢ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 | 
|   | 
| Theorem | rgen3 2584* | 
Generalization rule for restricted quantification.  (Contributed by NM,
       12-Jan-2008.)
 | 
| ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐶) → 𝜑)    ⇒   ⊢ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐶 𝜑 | 
|   | 
| Theorem | r19.21bi 2585 | 
Inference from Theorem 19.21 of [Margaris] p.
90.  (Restricted
       quantifier version.)  (Contributed by NM, 20-Nov-1994.)
 | 
| ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝜓)    ⇒   ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝜓) | 
|   | 
| Theorem | rspec2 2586 | 
Specialization rule for restricted quantification.  (Contributed by NM,
       20-Nov-1994.)
 | 
| ⊢ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑    ⇒   ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝜑) | 
|   | 
| Theorem | rspec3 2587 | 
Specialization rule for restricted quantification.  (Contributed by NM,
       20-Nov-1994.)
 | 
| ⊢ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐶 𝜑    ⇒   ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐶) → 𝜑) | 
|   | 
| Theorem | r19.21be 2588 | 
Inference from Theorem 19.21 of [Margaris] p.
90.  (Restricted
       quantifier version.)  (Contributed by NM, 21-Nov-1994.)
 | 
| ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝜓)    ⇒   ⊢ ∀𝑥 ∈ 𝐴 (𝜑 → 𝜓) | 
|   | 
| Theorem | nrex 2589 | 
Inference adding restricted existential quantifier to negated wff.
       (Contributed by NM, 16-Oct-2003.)
 | 
| ⊢ (𝑥 ∈ 𝐴 → ¬ 𝜓)    ⇒   ⊢  ¬ ∃𝑥 ∈ 𝐴 𝜓 | 
|   | 
| Theorem | nrexdv 2590* | 
Deduction adding restricted existential quantifier to negated wff.
       (Contributed by NM, 16-Oct-2003.)
 | 
| ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ¬ 𝜓)    ⇒   ⊢ (𝜑 → ¬ ∃𝑥 ∈ 𝐴 𝜓) | 
|   | 
| Theorem | rexim 2591 | 
Theorem 19.22 of [Margaris] p. 90. 
(Restricted quantifier version.)
     (Contributed by NM, 22-Nov-1994.)  (Proof shortened by Andrew Salmon,
     30-May-2011.)
 | 
| ⊢ (∀𝑥 ∈ 𝐴 (𝜑 → 𝜓) → (∃𝑥 ∈ 𝐴 𝜑 → ∃𝑥 ∈ 𝐴 𝜓)) | 
|   | 
| Theorem | reximia 2592 | 
Inference quantifying both antecedent and consequent.  (Contributed by
       NM, 10-Feb-1997.)
 | 
| ⊢ (𝑥 ∈ 𝐴 → (𝜑 → 𝜓))    ⇒   ⊢ (∃𝑥 ∈ 𝐴 𝜑 → ∃𝑥 ∈ 𝐴 𝜓) | 
|   | 
| Theorem | reximi2 2593 | 
Inference quantifying both antecedent and consequent, based on Theorem
       19.22 of [Margaris] p. 90. 
(Contributed by NM, 8-Nov-2004.)
 | 
| ⊢ ((𝑥 ∈ 𝐴 ∧ 𝜑) → (𝑥 ∈ 𝐵 ∧ 𝜓))    ⇒   ⊢ (∃𝑥 ∈ 𝐴 𝜑 → ∃𝑥 ∈ 𝐵 𝜓) | 
|   | 
| Theorem | reximi 2594 | 
Inference quantifying both antecedent and consequent.  (Contributed by
       NM, 18-Oct-1996.)
 | 
| ⊢ (𝜑 → 𝜓)    ⇒   ⊢ (∃𝑥 ∈ 𝐴 𝜑 → ∃𝑥 ∈ 𝐴 𝜓) | 
|   | 
| Theorem | reximdai 2595 | 
Deduction from Theorem 19.22 of [Margaris] p.
90.  (Restricted
       quantifier version.)  (Contributed by NM, 31-Aug-1999.)
 | 
| ⊢ Ⅎ𝑥𝜑   
 &   ⊢ (𝜑 → (𝑥 ∈ 𝐴 → (𝜓 → 𝜒)))    ⇒   ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 → ∃𝑥 ∈ 𝐴 𝜒)) | 
|   | 
| Theorem | reximdv2 2596* | 
Deduction quantifying both antecedent and consequent, based on Theorem
       19.22 of [Margaris] p. 90. 
(Contributed by NM, 17-Sep-2003.)
 | 
| ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝜓) → (𝑥 ∈ 𝐵 ∧ 𝜒)))    ⇒   ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 → ∃𝑥 ∈ 𝐵 𝜒)) | 
|   | 
| Theorem | reximdvai 2597* | 
Deduction quantifying both antecedent and consequent, based on Theorem
       19.22 of [Margaris] p. 90. 
(Contributed by NM, 14-Nov-2002.)
 | 
| ⊢ (𝜑 → (𝑥 ∈ 𝐴 → (𝜓 → 𝜒)))    ⇒   ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 → ∃𝑥 ∈ 𝐴 𝜒)) | 
|   | 
| Theorem | reximdv 2598* | 
Deduction from Theorem 19.22 of [Margaris] p.
90.  (Restricted
       quantifier version with strong hypothesis.)  (Contributed by NM,
       24-Jun-1998.)
 | 
| ⊢ (𝜑 → (𝜓 → 𝜒))    ⇒   ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 → ∃𝑥 ∈ 𝐴 𝜒)) | 
|   | 
| Theorem | reximdva 2599* | 
Deduction quantifying both antecedent and consequent, based on Theorem
       19.22 of [Margaris] p. 90. 
(Contributed by NM, 22-May-1999.)
 | 
| ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 → 𝜒))    ⇒   ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 → ∃𝑥 ∈ 𝐴 𝜒)) | 
|   | 
| Theorem | reximddv 2600* | 
Deduction from Theorem 19.22 of [Margaris] p.
90.  (Contributed by
       Thierry Arnoux, 7-Dec-2016.)
 | 
| ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝜓)) → 𝜒)   
 &   ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 𝜓)    ⇒   ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 𝜒) |