![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > df-ral | GIF version |
Description: Define restricted universal quantification. Special case of Definition 4.15(3) of [TakeutiZaring] p. 22. (Contributed by NM, 19-Aug-1993.) |
Ref | Expression |
---|---|
df-ral | ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wph | . . 3 wff 𝜑 | |
2 | vx | . . 3 setvar 𝑥 | |
3 | cA | . . 3 class 𝐴 | |
4 | 1, 2, 3 | wral 2455 | . 2 wff ∀𝑥 ∈ 𝐴 𝜑 |
5 | 2 | cv 1352 | . . . . 5 class 𝑥 |
6 | 5, 3 | wcel 2148 | . . . 4 wff 𝑥 ∈ 𝐴 |
7 | 6, 1 | wi 4 | . . 3 wff (𝑥 ∈ 𝐴 → 𝜑) |
8 | 7, 2 | wal 1351 | . 2 wff ∀𝑥(𝑥 ∈ 𝐴 → 𝜑) |
9 | 4, 8 | wb 105 | 1 wff (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝜑)) |
Colors of variables: wff set class |
This definition is referenced by: ralnex 2465 rexnalim 2466 dfrex2dc 2468 ralbida 2471 ralbidv2 2479 ralbid2 2481 ralbii2 2487 r2alf 2494 hbral 2506 hbra1 2507 nfra1 2508 nfraldw 2509 nfraldxy 2510 nfraldya 2512 r3al 2521 alral 2522 rsp 2524 rgen 2530 rgen2a 2531 ralim 2536 ralimi2 2537 ralimdaa 2543 ralimdv2 2547 ralrimi 2548 r19.21t 2552 ralrimd 2555 r19.21bi 2565 rexim 2571 r19.23t 2584 r19.26m 2608 r19.32r 2623 rabid2 2654 rabbi 2655 raleqf 2669 cbvralfw 2695 cbvralf 2697 cbvralvw 2708 cbvraldva2 2711 ralv 2755 ceqsralt 2765 rspct 2835 rspc 2836 rspcimdv 2843 rspc2gv 2854 ralab 2898 ralab2 2902 ralrab2 2903 reu2 2926 reu6 2927 reu3 2928 rmo4 2931 reu8 2934 rmo3f 2935 rmoim 2939 2reuswapdc 2942 2rmorex 2944 ra5 3052 rmo2ilem 3053 rmo3 3055 cbvralcsf 3120 dfss3 3146 dfss3f 3148 ssabral 3227 ss2rab 3232 rabss 3233 ssrab 3234 dfdif3 3246 ralunb 3317 reuss2 3416 rabeq0 3453 rabxmdc 3455 disj 3472 disj1 3474 r19.2m 3510 r19.2mOLD 3511 r19.3rm 3512 ralidm 3524 rgenm 3526 ralf0 3527 ralm 3528 ralsnsg 3630 ralsns 3631 unissb 3840 dfint2 3847 elint2 3852 elintrab 3857 ssintrab 3868 dfiin2g 3920 invdisj 3998 dftr5 4105 trint 4117 repizf2lem 4162 ordsucim 4500 ordunisuc2r 4514 setindel 4538 elirr 4541 en2lp 4554 zfregfr 4574 tfi 4582 zfinf2 4589 peano2 4595 peano5 4598 find 4599 raliunxp 4769 dmopab3 4841 issref 5012 asymref 5015 dffun7 5244 funcnv 5278 funcnvuni 5286 fnres 5333 fnopabg 5340 rexrnmpt 5660 dffo3 5664 acexmidlem2 5872 nfixpxy 6717 pw1dc0el 6911 isomnimap 7135 ismkvmap 7152 iswomnimap 7164 fz1sbc 10096 nnwosdc 12040 isprm2 12117 istopg 13502 cbvrald 14543 decidr 14551 bdcint 14632 bdcriota 14638 bj-axempty 14648 bj-indind 14687 bj-ssom 14691 findset 14700 bj-nnord 14713 bj-inf2vn 14729 bj-inf2vn2 14730 bj-findis 14734 alsconv 14830 |
Copyright terms: Public domain | W3C validator |