| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > df-ral | GIF version | ||
| Description: Define restricted universal quantification. Special case of Definition 4.15(3) of [TakeutiZaring] p. 22. (Contributed by NM, 19-Aug-1993.) |
| Ref | Expression |
|---|---|
| df-ral | ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wph | . . 3 wff 𝜑 | |
| 2 | vx | . . 3 setvar 𝑥 | |
| 3 | cA | . . 3 class 𝐴 | |
| 4 | 1, 2, 3 | wral 2475 | . 2 wff ∀𝑥 ∈ 𝐴 𝜑 |
| 5 | 2 | cv 1363 | . . . . 5 class 𝑥 |
| 6 | 5, 3 | wcel 2167 | . . . 4 wff 𝑥 ∈ 𝐴 |
| 7 | 6, 1 | wi 4 | . . 3 wff (𝑥 ∈ 𝐴 → 𝜑) |
| 8 | 7, 2 | wal 1362 | . 2 wff ∀𝑥(𝑥 ∈ 𝐴 → 𝜑) |
| 9 | 4, 8 | wb 105 | 1 wff (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝜑)) |
| Colors of variables: wff set class |
| This definition is referenced by: ralnex 2485 rexnalim 2486 dfrex2dc 2488 ralbida 2491 ralbidv2 2499 ralbid2 2501 ralbii2 2507 r2alf 2514 hbral 2526 hbra1 2527 nfra1 2528 nfraldw 2529 nfraldxy 2530 nfraldya 2532 r3al 2541 alral 2542 rsp 2544 rgen 2550 rgen2a 2551 ralim 2556 ralimi2 2557 ralimdaa 2563 ralimdv2 2567 ralrimi 2568 r19.21t 2572 ralrimd 2575 r19.21bi 2585 rexim 2591 r19.23t 2604 r19.26m 2628 r19.32r 2643 rabid2 2674 rabbi 2675 raleqf 2689 cbvralfw 2719 cbvralf 2721 cbvralvw 2733 cbvraldva2 2736 ralv 2780 ceqsralt 2790 rspct 2861 rspc 2862 rspcimdv 2869 rspc2gv 2880 ralab 2924 ralab2 2928 ralrab2 2929 reu2 2952 reu6 2953 reu3 2954 rmo4 2957 reu8 2960 rmo3f 2961 rmoim 2965 2reuswapdc 2968 2rmorex 2970 ra5 3078 rmo2ilem 3079 rmo3 3081 cbvralcsf 3147 dfss3 3173 dfss3f 3176 ssabral 3255 ss2rab 3260 rabss 3261 ssrab 3262 dfdif3 3274 ralunb 3345 reuss2 3444 rabeq0 3481 rabxmdc 3483 disj 3500 disj1 3502 r19.2m 3538 r19.2mOLD 3539 r19.3rm 3540 ralidm 3552 ralf0 3554 ralm 3555 ralsnsg 3660 ralsns 3661 unissb 3870 dfint2 3877 elint2 3882 elintrab 3887 ssintrab 3898 dfiin2g 3950 invdisj 4028 dftr5 4135 trint 4147 repizf2lem 4195 ordsucim 4537 ordunisuc2r 4551 setindel 4575 elirr 4578 en2lp 4591 zfregfr 4611 tfi 4619 zfinf2 4626 peano2 4632 peano5 4635 find 4636 raliunxp 4808 dmopab3 4880 issref 5053 asymref 5056 dffun7 5286 funcnv 5320 funcnvuni 5328 fnres 5377 fnopabg 5384 rexrnmpt 5708 dffo3 5712 acexmidlem2 5922 nfixpxy 6785 pw1dc0el 6981 isomnimap 7212 ismkvmap 7229 iswomnimap 7241 fz1sbc 10188 nnwosdc 12231 isprm2 12310 istopg 14319 cbvrald 15518 decidr 15526 bdcint 15607 bdcriota 15613 bj-axempty 15623 bj-indind 15662 bj-ssom 15666 findset 15675 bj-nnord 15688 bj-inf2vn 15704 bj-inf2vn2 15705 bj-findis 15709 alsconv 15811 |
| Copyright terms: Public domain | W3C validator |