| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > df-ral | GIF version | ||
| Description: Define restricted universal quantification. Special case of Definition 4.15(3) of [TakeutiZaring] p. 22. (Contributed by NM, 19-Aug-1993.) |
| Ref | Expression |
|---|---|
| df-ral | ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wph | . . 3 wff 𝜑 | |
| 2 | vx | . . 3 setvar 𝑥 | |
| 3 | cA | . . 3 class 𝐴 | |
| 4 | 1, 2, 3 | wral 2488 | . 2 wff ∀𝑥 ∈ 𝐴 𝜑 |
| 5 | 2 | cv 1374 | . . . . 5 class 𝑥 |
| 6 | 5, 3 | wcel 2180 | . . . 4 wff 𝑥 ∈ 𝐴 |
| 7 | 6, 1 | wi 4 | . . 3 wff (𝑥 ∈ 𝐴 → 𝜑) |
| 8 | 7, 2 | wal 1373 | . 2 wff ∀𝑥(𝑥 ∈ 𝐴 → 𝜑) |
| 9 | 4, 8 | wb 105 | 1 wff (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝜑)) |
| Colors of variables: wff set class |
| This definition is referenced by: ralnex 2498 rexnalim 2499 dfrex2dc 2501 ralbida 2504 ralbidv2 2512 ralbid2 2514 ralbii2 2520 r2alf 2527 hbral 2539 hbra1 2540 nfra1 2541 nfraldw 2542 nfraldxy 2543 nfraldya 2545 r3al 2554 alral 2555 rsp 2557 rgen 2563 rgen2a 2564 ralim 2569 ralimi2 2570 ralimdaa 2576 ralimdv2 2580 ralrimi 2581 r19.21t 2585 ralrimd 2588 r19.21bi 2598 rexim 2604 r19.23t 2618 r19.26m 2642 r19.32r 2657 rabid2 2688 rabbi 2689 raleqf 2704 cbvralfw 2734 cbvralf 2736 cbvralvw 2749 cbvraldva2 2752 ralv 2797 ceqsralt 2807 rspct 2880 rspc 2881 rspcimdv 2888 rspc2gv 2899 ralab 2943 ralab2 2947 ralrab2 2948 reu2 2971 reu6 2972 reu3 2973 rmo4 2976 reu8 2979 rmo3f 2980 rmoim 2984 2reuswapdc 2987 2rmorex 2989 ra5 3098 rmo2ilem 3099 rmo3 3101 cbvralcsf 3167 dfss3 3193 dfss3f 3196 ssabral 3275 ss2rab 3280 rabss 3281 ssrab 3282 dfdif3 3294 ralunb 3365 reuss2 3464 rabeq0 3501 rabxmdc 3503 disj 3520 disj1 3522 r19.2m 3558 r19.2mOLD 3559 r19.3rm 3560 ralidm 3572 ralf0 3574 ralm 3575 ralsnsg 3683 ralsns 3684 unissb 3897 dfint2 3904 elint2 3909 elintrab 3914 ssintrab 3925 dfiin2g 3977 invdisj 4055 dftr5 4164 trint 4176 repizf2lem 4224 ordsucim 4569 ordunisuc2r 4583 setindel 4607 elirr 4610 en2lp 4623 zfregfr 4643 tfi 4651 zfinf2 4658 peano2 4664 peano5 4667 find 4668 raliunxp 4840 dmopab3 4913 issref 5087 asymref 5090 dffun7 5321 funcnv 5358 funcnvuni 5366 fnres 5416 fnopabg 5423 rexrnmpt 5751 dffo3 5755 acexmidlem2 5971 nfixpxy 6834 pw1dc0el 7041 isomnimap 7272 ismkvmap 7289 iswomnimap 7301 fz1sbc 10260 nnwosdc 12526 isprm2 12605 istopg 14638 cbvrald 16062 decidr 16070 bdcint 16150 bdcriota 16156 bj-axempty 16166 bj-indind 16205 bj-ssom 16209 findset 16218 bj-nnord 16231 bj-inf2vn 16247 bj-inf2vn2 16248 bj-findis 16252 alsconv 16359 |
| Copyright terms: Public domain | W3C validator |