![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > df-ral | GIF version |
Description: Define restricted universal quantification. Special case of Definition 4.15(3) of [TakeutiZaring] p. 22. (Contributed by NM, 19-Aug-1993.) |
Ref | Expression |
---|---|
df-ral | ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wph | . . 3 wff 𝜑 | |
2 | vx | . . 3 setvar 𝑥 | |
3 | cA | . . 3 class 𝐴 | |
4 | 1, 2, 3 | wral 2472 | . 2 wff ∀𝑥 ∈ 𝐴 𝜑 |
5 | 2 | cv 1363 | . . . . 5 class 𝑥 |
6 | 5, 3 | wcel 2164 | . . . 4 wff 𝑥 ∈ 𝐴 |
7 | 6, 1 | wi 4 | . . 3 wff (𝑥 ∈ 𝐴 → 𝜑) |
8 | 7, 2 | wal 1362 | . 2 wff ∀𝑥(𝑥 ∈ 𝐴 → 𝜑) |
9 | 4, 8 | wb 105 | 1 wff (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝜑)) |
Colors of variables: wff set class |
This definition is referenced by: ralnex 2482 rexnalim 2483 dfrex2dc 2485 ralbida 2488 ralbidv2 2496 ralbid2 2498 ralbii2 2504 r2alf 2511 hbral 2523 hbra1 2524 nfra1 2525 nfraldw 2526 nfraldxy 2527 nfraldya 2529 r3al 2538 alral 2539 rsp 2541 rgen 2547 rgen2a 2548 ralim 2553 ralimi2 2554 ralimdaa 2560 ralimdv2 2564 ralrimi 2565 r19.21t 2569 ralrimd 2572 r19.21bi 2582 rexim 2588 r19.23t 2601 r19.26m 2625 r19.32r 2640 rabid2 2671 rabbi 2672 raleqf 2686 cbvralfw 2716 cbvralf 2718 cbvralvw 2730 cbvraldva2 2733 ralv 2777 ceqsralt 2787 rspct 2858 rspc 2859 rspcimdv 2866 rspc2gv 2877 ralab 2921 ralab2 2925 ralrab2 2926 reu2 2949 reu6 2950 reu3 2951 rmo4 2954 reu8 2957 rmo3f 2958 rmoim 2962 2reuswapdc 2965 2rmorex 2967 ra5 3075 rmo2ilem 3076 rmo3 3078 cbvralcsf 3144 dfss3 3170 dfss3f 3172 ssabral 3251 ss2rab 3256 rabss 3257 ssrab 3258 dfdif3 3270 ralunb 3341 reuss2 3440 rabeq0 3477 rabxmdc 3479 disj 3496 disj1 3498 r19.2m 3534 r19.2mOLD 3535 r19.3rm 3536 ralidm 3548 ralf0 3550 ralm 3551 ralsnsg 3656 ralsns 3657 unissb 3866 dfint2 3873 elint2 3878 elintrab 3883 ssintrab 3894 dfiin2g 3946 invdisj 4024 dftr5 4131 trint 4143 repizf2lem 4191 ordsucim 4533 ordunisuc2r 4547 setindel 4571 elirr 4574 en2lp 4587 zfregfr 4607 tfi 4615 zfinf2 4622 peano2 4628 peano5 4631 find 4632 raliunxp 4804 dmopab3 4876 issref 5049 asymref 5052 dffun7 5282 funcnv 5316 funcnvuni 5324 fnres 5371 fnopabg 5378 rexrnmpt 5702 dffo3 5706 acexmidlem2 5916 nfixpxy 6773 pw1dc0el 6969 isomnimap 7198 ismkvmap 7215 iswomnimap 7227 fz1sbc 10165 nnwosdc 12179 isprm2 12258 istopg 14178 cbvrald 15350 decidr 15358 bdcint 15439 bdcriota 15445 bj-axempty 15455 bj-indind 15494 bj-ssom 15498 findset 15507 bj-nnord 15520 bj-inf2vn 15536 bj-inf2vn2 15537 bj-findis 15541 alsconv 15640 |
Copyright terms: Public domain | W3C validator |