| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > df-ral | GIF version | ||
| Description: Define restricted universal quantification. Special case of Definition 4.15(3) of [TakeutiZaring] p. 22. (Contributed by NM, 19-Aug-1993.) |
| Ref | Expression |
|---|---|
| df-ral | ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wph | . . 3 wff 𝜑 | |
| 2 | vx | . . 3 setvar 𝑥 | |
| 3 | cA | . . 3 class 𝐴 | |
| 4 | 1, 2, 3 | wral 2508 | . 2 wff ∀𝑥 ∈ 𝐴 𝜑 |
| 5 | 2 | cv 1394 | . . . . 5 class 𝑥 |
| 6 | 5, 3 | wcel 2200 | . . . 4 wff 𝑥 ∈ 𝐴 |
| 7 | 6, 1 | wi 4 | . . 3 wff (𝑥 ∈ 𝐴 → 𝜑) |
| 8 | 7, 2 | wal 1393 | . 2 wff ∀𝑥(𝑥 ∈ 𝐴 → 𝜑) |
| 9 | 4, 8 | wb 105 | 1 wff (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝜑)) |
| Colors of variables: wff set class |
| This definition is referenced by: ralnex 2518 rexnalim 2519 dfrex2dc 2521 ralbida 2524 ralbidv2 2532 ralbid2 2534 ralbii2 2540 r2alf 2547 hbral 2559 hbra1 2560 nfra1 2561 nfraldw 2562 nfraldxy 2563 nfraldya 2565 r3al 2574 alral 2575 rsp 2577 rgen 2583 rgen2a 2584 ralim 2589 ralimi2 2590 ralimdaa 2596 ralimdv2 2600 ralrimi 2601 r19.21t 2605 ralrimd 2608 r19.21bi 2618 rexim 2624 r19.23t 2638 r19.26m 2662 r19.32r 2677 rabid2 2708 rabbi 2709 raleqf 2724 cbvralfw 2754 cbvralf 2756 cbvralvw 2769 cbvraldva2 2772 ralv 2817 ceqsralt 2827 rspct 2900 rspc 2901 rspcimdv 2908 rspc2gv 2919 ralab 2963 ralab2 2967 ralrab2 2968 reu2 2991 reu6 2992 reu3 2993 rmo4 2996 reu8 2999 rmo3f 3000 rmoim 3004 2reuswapdc 3007 2rmorex 3009 ra5 3118 rmo2ilem 3119 rmo3 3121 cbvralcsf 3187 dfss3 3213 dfss3f 3216 ssabral 3295 ss2rab 3300 rabss 3301 ssrab 3302 dfdif3 3314 ralunb 3385 reuss2 3484 rabeq0 3521 rabxmdc 3523 disj 3540 disj1 3542 r19.2m 3578 r19.2mOLD 3579 r19.3rm 3580 ralidm 3592 ralf0 3594 ralm 3595 ralsnsg 3703 ralsns 3704 unissb 3918 dfint2 3925 elint2 3930 elintrab 3935 ssintrab 3946 dfiin2g 3998 invdisj 4076 dftr5 4185 trint 4197 repizf2lem 4245 ordsucim 4592 ordunisuc2r 4606 setindel 4630 elirr 4633 en2lp 4646 zfregfr 4666 tfi 4674 zfinf2 4681 peano2 4687 peano5 4690 find 4691 raliunxp 4863 dmopab3 4936 issref 5111 asymref 5114 dffun7 5345 funcnv 5382 funcnvuni 5390 fnres 5440 fnopabg 5447 rexrnmpt 5780 dffo3 5784 acexmidlem2 6004 nfixpxy 6872 pw1dc0el 7081 isomnimap 7312 ismkvmap 7329 iswomnimap 7341 fz1sbc 10300 nnwosdc 12568 isprm2 12647 istopg 14681 cbvrald 16176 decidr 16184 bdcint 16264 bdcriota 16270 bj-axempty 16280 bj-indind 16319 bj-ssom 16323 findset 16332 bj-nnord 16345 bj-inf2vn 16361 bj-inf2vn2 16362 bj-findis 16366 alsconv 16478 |
| Copyright terms: Public domain | W3C validator |