Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > df-ral | GIF version |
Description: Define restricted universal quantification. Special case of Definition 4.15(3) of [TakeutiZaring] p. 22. (Contributed by NM, 19-Aug-1993.) |
Ref | Expression |
---|---|
df-ral | ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wph | . . 3 wff 𝜑 | |
2 | vx | . . 3 setvar 𝑥 | |
3 | cA | . . 3 class 𝐴 | |
4 | 1, 2, 3 | wral 2443 | . 2 wff ∀𝑥 ∈ 𝐴 𝜑 |
5 | 2 | cv 1342 | . . . . 5 class 𝑥 |
6 | 5, 3 | wcel 2136 | . . . 4 wff 𝑥 ∈ 𝐴 |
7 | 6, 1 | wi 4 | . . 3 wff (𝑥 ∈ 𝐴 → 𝜑) |
8 | 7, 2 | wal 1341 | . 2 wff ∀𝑥(𝑥 ∈ 𝐴 → 𝜑) |
9 | 4, 8 | wb 104 | 1 wff (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝜑)) |
Colors of variables: wff set class |
This definition is referenced by: ralnex 2453 rexnalim 2454 dfrex2dc 2456 ralbida 2459 ralbidv2 2467 ralbid2 2469 ralbii2 2475 r2alf 2482 hbral 2494 hbra1 2495 nfra1 2496 nfraldw 2497 nfraldxy 2498 nfraldya 2500 r3al 2509 alral 2510 rsp 2512 rgen 2518 rgen2a 2519 ralim 2524 ralimi2 2525 ralimdaa 2531 ralimdv2 2535 ralrimi 2536 r19.21t 2540 ralrimd 2543 r19.21bi 2553 rexim 2559 r19.23t 2572 r19.26m 2596 r19.32r 2611 rabid2 2641 rabbi 2642 raleqf 2656 cbvralfw 2682 cbvralf 2684 cbvralvw 2695 cbvraldva2 2698 ralv 2742 ceqsralt 2752 rspct 2822 rspc 2823 rspcimdv 2830 rspc2gv 2841 ralab 2885 ralab2 2889 ralrab2 2890 reu2 2913 reu6 2914 reu3 2915 rmo4 2918 reu8 2921 rmo3f 2922 rmoim 2926 2reuswapdc 2929 2rmorex 2931 ra5 3038 rmo2ilem 3039 rmo3 3041 cbvralcsf 3106 dfss3 3131 dfss3f 3133 ssabral 3212 ss2rab 3217 rabss 3218 ssrab 3219 dfdif3 3231 ralunb 3302 reuss2 3401 rabeq0 3437 rabxmdc 3439 disj 3456 disj1 3458 r19.2m 3494 r19.2mOLD 3495 r19.3rm 3496 ralidm 3508 rgenm 3510 ralf0 3511 ralm 3512 ralsnsg 3612 ralsns 3613 unissb 3818 dfint2 3825 elint2 3830 elintrab 3835 ssintrab 3846 dfiin2g 3898 invdisj 3975 dftr5 4082 trint 4094 repizf2lem 4139 ordsucim 4476 ordunisuc2r 4490 setindel 4514 elirr 4517 en2lp 4530 zfregfr 4550 tfi 4558 zfinf2 4565 peano2 4571 peano5 4574 find 4575 raliunxp 4744 dmopab3 4816 issref 4985 asymref 4988 dffun7 5214 funcnv 5248 funcnvuni 5256 fnres 5303 fnopabg 5310 rexrnmpt 5627 dffo3 5631 acexmidlem2 5838 nfixpxy 6679 pw1dc0el 6873 isomnimap 7097 ismkvmap 7114 iswomnimap 7126 fz1sbc 10027 nnwosdc 11968 isprm2 12045 istopg 12597 cbvrald 13629 decidr 13637 bdcint 13719 bdcriota 13725 bj-axempty 13735 bj-indind 13774 bj-ssom 13778 findset 13787 bj-nnord 13800 bj-inf2vn 13816 bj-inf2vn2 13817 bj-findis 13821 alsconv 13916 |
Copyright terms: Public domain | W3C validator |