| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > df-ral | GIF version | ||
| Description: Define restricted universal quantification. Special case of Definition 4.15(3) of [TakeutiZaring] p. 22. (Contributed by NM, 19-Aug-1993.) |
| Ref | Expression |
|---|---|
| df-ral | ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wph | . . 3 wff 𝜑 | |
| 2 | vx | . . 3 setvar 𝑥 | |
| 3 | cA | . . 3 class 𝐴 | |
| 4 | 1, 2, 3 | wral 2485 | . 2 wff ∀𝑥 ∈ 𝐴 𝜑 |
| 5 | 2 | cv 1372 | . . . . 5 class 𝑥 |
| 6 | 5, 3 | wcel 2177 | . . . 4 wff 𝑥 ∈ 𝐴 |
| 7 | 6, 1 | wi 4 | . . 3 wff (𝑥 ∈ 𝐴 → 𝜑) |
| 8 | 7, 2 | wal 1371 | . 2 wff ∀𝑥(𝑥 ∈ 𝐴 → 𝜑) |
| 9 | 4, 8 | wb 105 | 1 wff (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝜑)) |
| Colors of variables: wff set class |
| This definition is referenced by: ralnex 2495 rexnalim 2496 dfrex2dc 2498 ralbida 2501 ralbidv2 2509 ralbid2 2511 ralbii2 2517 r2alf 2524 hbral 2536 hbra1 2537 nfra1 2538 nfraldw 2539 nfraldxy 2540 nfraldya 2542 r3al 2551 alral 2552 rsp 2554 rgen 2560 rgen2a 2561 ralim 2566 ralimi2 2567 ralimdaa 2573 ralimdv2 2577 ralrimi 2578 r19.21t 2582 ralrimd 2585 r19.21bi 2595 rexim 2601 r19.23t 2614 r19.26m 2638 r19.32r 2653 rabid2 2684 rabbi 2685 raleqf 2699 cbvralfw 2729 cbvralf 2731 cbvralvw 2743 cbvraldva2 2746 ralv 2790 ceqsralt 2800 rspct 2871 rspc 2872 rspcimdv 2879 rspc2gv 2890 ralab 2934 ralab2 2938 ralrab2 2939 reu2 2962 reu6 2963 reu3 2964 rmo4 2967 reu8 2970 rmo3f 2971 rmoim 2975 2reuswapdc 2978 2rmorex 2980 ra5 3088 rmo2ilem 3089 rmo3 3091 cbvralcsf 3157 dfss3 3183 dfss3f 3186 ssabral 3265 ss2rab 3270 rabss 3271 ssrab 3272 dfdif3 3284 ralunb 3355 reuss2 3454 rabeq0 3491 rabxmdc 3493 disj 3510 disj1 3512 r19.2m 3548 r19.2mOLD 3549 r19.3rm 3550 ralidm 3562 ralf0 3564 ralm 3565 ralsnsg 3671 ralsns 3672 unissb 3882 dfint2 3889 elint2 3894 elintrab 3899 ssintrab 3910 dfiin2g 3962 invdisj 4040 dftr5 4149 trint 4161 repizf2lem 4209 ordsucim 4552 ordunisuc2r 4566 setindel 4590 elirr 4593 en2lp 4606 zfregfr 4626 tfi 4634 zfinf2 4641 peano2 4647 peano5 4650 find 4651 raliunxp 4823 dmopab3 4896 issref 5070 asymref 5073 dffun7 5303 funcnv 5340 funcnvuni 5348 fnres 5398 fnopabg 5405 rexrnmpt 5730 dffo3 5734 acexmidlem2 5948 nfixpxy 6811 pw1dc0el 7015 isomnimap 7246 ismkvmap 7263 iswomnimap 7275 fz1sbc 10225 nnwosdc 12404 isprm2 12483 istopg 14515 cbvrald 15798 decidr 15806 bdcint 15887 bdcriota 15893 bj-axempty 15903 bj-indind 15942 bj-ssom 15946 findset 15955 bj-nnord 15968 bj-inf2vn 15984 bj-inf2vn2 15985 bj-findis 15989 alsconv 16093 |
| Copyright terms: Public domain | W3C validator |