Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > df-ral | GIF version |
Description: Define restricted universal quantification. Special case of Definition 4.15(3) of [TakeutiZaring] p. 22. (Contributed by NM, 19-Aug-1993.) |
Ref | Expression |
---|---|
df-ral | ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wph | . . 3 wff 𝜑 | |
2 | vx | . . 3 setvar 𝑥 | |
3 | cA | . . 3 class 𝐴 | |
4 | 1, 2, 3 | wral 2448 | . 2 wff ∀𝑥 ∈ 𝐴 𝜑 |
5 | 2 | cv 1347 | . . . . 5 class 𝑥 |
6 | 5, 3 | wcel 2141 | . . . 4 wff 𝑥 ∈ 𝐴 |
7 | 6, 1 | wi 4 | . . 3 wff (𝑥 ∈ 𝐴 → 𝜑) |
8 | 7, 2 | wal 1346 | . 2 wff ∀𝑥(𝑥 ∈ 𝐴 → 𝜑) |
9 | 4, 8 | wb 104 | 1 wff (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝜑)) |
Colors of variables: wff set class |
This definition is referenced by: ralnex 2458 rexnalim 2459 dfrex2dc 2461 ralbida 2464 ralbidv2 2472 ralbid2 2474 ralbii2 2480 r2alf 2487 hbral 2499 hbra1 2500 nfra1 2501 nfraldw 2502 nfraldxy 2503 nfraldya 2505 r3al 2514 alral 2515 rsp 2517 rgen 2523 rgen2a 2524 ralim 2529 ralimi2 2530 ralimdaa 2536 ralimdv2 2540 ralrimi 2541 r19.21t 2545 ralrimd 2548 r19.21bi 2558 rexim 2564 r19.23t 2577 r19.26m 2601 r19.32r 2616 rabid2 2646 rabbi 2647 raleqf 2661 cbvralfw 2687 cbvralf 2689 cbvralvw 2700 cbvraldva2 2703 ralv 2747 ceqsralt 2757 rspct 2827 rspc 2828 rspcimdv 2835 rspc2gv 2846 ralab 2890 ralab2 2894 ralrab2 2895 reu2 2918 reu6 2919 reu3 2920 rmo4 2923 reu8 2926 rmo3f 2927 rmoim 2931 2reuswapdc 2934 2rmorex 2936 ra5 3043 rmo2ilem 3044 rmo3 3046 cbvralcsf 3111 dfss3 3137 dfss3f 3139 ssabral 3218 ss2rab 3223 rabss 3224 ssrab 3225 dfdif3 3237 ralunb 3308 reuss2 3407 rabeq0 3443 rabxmdc 3445 disj 3462 disj1 3464 r19.2m 3500 r19.2mOLD 3501 r19.3rm 3502 ralidm 3514 rgenm 3516 ralf0 3517 ralm 3518 ralsnsg 3618 ralsns 3619 unissb 3824 dfint2 3831 elint2 3836 elintrab 3841 ssintrab 3852 dfiin2g 3904 invdisj 3981 dftr5 4088 trint 4100 repizf2lem 4145 ordsucim 4482 ordunisuc2r 4496 setindel 4520 elirr 4523 en2lp 4536 zfregfr 4556 tfi 4564 zfinf2 4571 peano2 4577 peano5 4580 find 4581 raliunxp 4750 dmopab3 4822 issref 4991 asymref 4994 dffun7 5223 funcnv 5257 funcnvuni 5265 fnres 5312 fnopabg 5319 rexrnmpt 5636 dffo3 5640 acexmidlem2 5847 nfixpxy 6691 pw1dc0el 6885 isomnimap 7109 ismkvmap 7126 iswomnimap 7138 fz1sbc 10039 nnwosdc 11981 isprm2 12058 istopg 12750 cbvrald 13782 decidr 13790 bdcint 13872 bdcriota 13878 bj-axempty 13888 bj-indind 13927 bj-ssom 13931 findset 13940 bj-nnord 13953 bj-inf2vn 13969 bj-inf2vn2 13970 bj-findis 13974 alsconv 14069 |
Copyright terms: Public domain | W3C validator |