ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rspec3 GIF version

Theorem rspec3 2556
Description: Specialization rule for restricted quantification. (Contributed by NM, 20-Nov-1994.)
Hypothesis
Ref Expression
rspec3.1 𝑥𝐴𝑦𝐵𝑧𝐶 𝜑
Assertion
Ref Expression
rspec3 ((𝑥𝐴𝑦𝐵𝑧𝐶) → 𝜑)

Proof of Theorem rspec3
StepHypRef Expression
1 rspec3.1 . . . 4 𝑥𝐴𝑦𝐵𝑧𝐶 𝜑
21rspec2 2555 . . 3 ((𝑥𝐴𝑦𝐵) → ∀𝑧𝐶 𝜑)
32r19.21bi 2554 . 2 (((𝑥𝐴𝑦𝐵) ∧ 𝑧𝐶) → 𝜑)
433impa 1184 1 ((𝑥𝐴𝑦𝐵𝑧𝐶) → 𝜑)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  w3a 968  wcel 2136  wral 2444
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-4 1498
This theorem depends on definitions:  df-bi 116  df-3an 970  df-ral 2449
This theorem is referenced by:  ordsoexmid  4539
  Copyright terms: Public domain W3C validator