Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > rspec3 | GIF version |
Description: Specialization rule for restricted quantification. (Contributed by NM, 20-Nov-1994.) |
Ref | Expression |
---|---|
rspec3.1 | ⊢ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐶 𝜑 |
Ref | Expression |
---|---|
rspec3 | ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐶) → 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rspec3.1 | . . . 4 ⊢ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐶 𝜑 | |
2 | 1 | rspec2 2555 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → ∀𝑧 ∈ 𝐶 𝜑) |
3 | 2 | r19.21bi 2554 | . 2 ⊢ (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 ∈ 𝐶) → 𝜑) |
4 | 3 | 3impa 1184 | 1 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐶) → 𝜑) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∧ w3a 968 ∈ wcel 2136 ∀wral 2444 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-4 1498 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-ral 2449 |
This theorem is referenced by: ordsoexmid 4539 |
Copyright terms: Public domain | W3C validator |