| Step | Hyp | Ref
| Expression |
| 1 | | ordtriexmidlem 4555 |
. . . . 5
⊢ {𝑤 ∈ {∅} ∣ 𝜑} ∈ On |
| 2 | 1 | elexi 2775 |
. . . 4
⊢ {𝑤 ∈ {∅} ∣ 𝜑} ∈ V |
| 3 | 2 | sucid 4452 |
. . 3
⊢ {𝑤 ∈ {∅} ∣ 𝜑} ∈ suc {𝑤 ∈ {∅} ∣ 𝜑} |
| 4 | 1 | onsuci 4552 |
. . . 4
⊢ suc
{𝑤 ∈ {∅} ∣
𝜑} ∈ On |
| 5 | | suc0 4446 |
. . . . 5
⊢ suc
∅ = {∅} |
| 6 | | 0elon 4427 |
. . . . . 6
⊢ ∅
∈ On |
| 7 | 6 | onsuci 4552 |
. . . . 5
⊢ suc
∅ ∈ On |
| 8 | 5, 7 | eqeltrri 2270 |
. . . 4
⊢ {∅}
∈ On |
| 9 | | eleq1 2259 |
. . . . . . 7
⊢ (𝑥 = {𝑤 ∈ {∅} ∣ 𝜑} → (𝑥 ∈ On ↔ {𝑤 ∈ {∅} ∣ 𝜑} ∈ On)) |
| 10 | 9 | 3anbi1d 1327 |
. . . . . 6
⊢ (𝑥 = {𝑤 ∈ {∅} ∣ 𝜑} → ((𝑥 ∈ On ∧ suc {𝑤 ∈ {∅} ∣ 𝜑} ∈ On ∧ {∅} ∈ On)
↔ ({𝑤 ∈ {∅}
∣ 𝜑} ∈ On ∧
suc {𝑤 ∈ {∅}
∣ 𝜑} ∈ On ∧
{∅} ∈ On))) |
| 11 | | eleq1 2259 |
. . . . . . 7
⊢ (𝑥 = {𝑤 ∈ {∅} ∣ 𝜑} → (𝑥 ∈ suc {𝑤 ∈ {∅} ∣ 𝜑} ↔ {𝑤 ∈ {∅} ∣ 𝜑} ∈ suc {𝑤 ∈ {∅} ∣ 𝜑})) |
| 12 | | eleq1 2259 |
. . . . . . . 8
⊢ (𝑥 = {𝑤 ∈ {∅} ∣ 𝜑} → (𝑥 ∈ {∅} ↔ {𝑤 ∈ {∅} ∣ 𝜑} ∈ {∅})) |
| 13 | 12 | orbi1d 792 |
. . . . . . 7
⊢ (𝑥 = {𝑤 ∈ {∅} ∣ 𝜑} → ((𝑥 ∈ {∅} ∨ {∅} ∈ suc
{𝑤 ∈ {∅} ∣
𝜑}) ↔ ({𝑤 ∈ {∅} ∣ 𝜑} ∈ {∅} ∨ {∅}
∈ suc {𝑤 ∈
{∅} ∣ 𝜑}))) |
| 14 | 11, 13 | imbi12d 234 |
. . . . . 6
⊢ (𝑥 = {𝑤 ∈ {∅} ∣ 𝜑} → ((𝑥 ∈ suc {𝑤 ∈ {∅} ∣ 𝜑} → (𝑥 ∈ {∅} ∨ {∅} ∈ suc
{𝑤 ∈ {∅} ∣
𝜑})) ↔ ({𝑤 ∈ {∅} ∣ 𝜑} ∈ suc {𝑤 ∈ {∅} ∣ 𝜑} → ({𝑤 ∈ {∅} ∣ 𝜑} ∈ {∅} ∨ {∅} ∈ suc
{𝑤 ∈ {∅} ∣
𝜑})))) |
| 15 | 10, 14 | imbi12d 234 |
. . . . 5
⊢ (𝑥 = {𝑤 ∈ {∅} ∣ 𝜑} → (((𝑥 ∈ On ∧ suc {𝑤 ∈ {∅} ∣ 𝜑} ∈ On ∧ {∅} ∈ On)
→ (𝑥 ∈ suc {𝑤 ∈ {∅} ∣ 𝜑} → (𝑥 ∈ {∅} ∨ {∅} ∈ suc
{𝑤 ∈ {∅} ∣
𝜑}))) ↔ (({𝑤 ∈ {∅} ∣ 𝜑} ∈ On ∧ suc {𝑤 ∈ {∅} ∣ 𝜑} ∈ On ∧ {∅} ∈
On) → ({𝑤 ∈
{∅} ∣ 𝜑} ∈
suc {𝑤 ∈ {∅}
∣ 𝜑} → ({𝑤 ∈ {∅} ∣ 𝜑} ∈ {∅} ∨ {∅}
∈ suc {𝑤 ∈
{∅} ∣ 𝜑}))))) |
| 16 | 4 | elexi 2775 |
. . . . . 6
⊢ suc
{𝑤 ∈ {∅} ∣
𝜑} ∈ V |
| 17 | | eleq1 2259 |
. . . . . . . 8
⊢ (𝑦 = suc {𝑤 ∈ {∅} ∣ 𝜑} → (𝑦 ∈ On ↔ suc {𝑤 ∈ {∅} ∣ 𝜑} ∈ On)) |
| 18 | 17 | 3anbi2d 1328 |
. . . . . . 7
⊢ (𝑦 = suc {𝑤 ∈ {∅} ∣ 𝜑} → ((𝑥 ∈ On ∧ 𝑦 ∈ On ∧ {∅} ∈ On) ↔
(𝑥 ∈ On ∧ suc
{𝑤 ∈ {∅} ∣
𝜑} ∈ On ∧ {∅}
∈ On))) |
| 19 | | eleq2 2260 |
. . . . . . . 8
⊢ (𝑦 = suc {𝑤 ∈ {∅} ∣ 𝜑} → (𝑥 ∈ 𝑦 ↔ 𝑥 ∈ suc {𝑤 ∈ {∅} ∣ 𝜑})) |
| 20 | | eleq2 2260 |
. . . . . . . . 9
⊢ (𝑦 = suc {𝑤 ∈ {∅} ∣ 𝜑} → ({∅} ∈ 𝑦 ↔ {∅} ∈ suc
{𝑤 ∈ {∅} ∣
𝜑})) |
| 21 | 20 | orbi2d 791 |
. . . . . . . 8
⊢ (𝑦 = suc {𝑤 ∈ {∅} ∣ 𝜑} → ((𝑥 ∈ {∅} ∨ {∅} ∈ 𝑦) ↔ (𝑥 ∈ {∅} ∨ {∅} ∈ suc
{𝑤 ∈ {∅} ∣
𝜑}))) |
| 22 | 19, 21 | imbi12d 234 |
. . . . . . 7
⊢ (𝑦 = suc {𝑤 ∈ {∅} ∣ 𝜑} → ((𝑥 ∈ 𝑦 → (𝑥 ∈ {∅} ∨ {∅} ∈ 𝑦)) ↔ (𝑥 ∈ suc {𝑤 ∈ {∅} ∣ 𝜑} → (𝑥 ∈ {∅} ∨ {∅} ∈ suc
{𝑤 ∈ {∅} ∣
𝜑})))) |
| 23 | 18, 22 | imbi12d 234 |
. . . . . 6
⊢ (𝑦 = suc {𝑤 ∈ {∅} ∣ 𝜑} → (((𝑥 ∈ On ∧ 𝑦 ∈ On ∧ {∅} ∈ On) →
(𝑥 ∈ 𝑦 → (𝑥 ∈ {∅} ∨ {∅} ∈ 𝑦))) ↔ ((𝑥 ∈ On ∧ suc {𝑤 ∈ {∅} ∣ 𝜑} ∈ On ∧ {∅} ∈ On)
→ (𝑥 ∈ suc {𝑤 ∈ {∅} ∣ 𝜑} → (𝑥 ∈ {∅} ∨ {∅} ∈ suc
{𝑤 ∈ {∅} ∣
𝜑}))))) |
| 24 | | p0ex 4221 |
. . . . . . 7
⊢ {∅}
∈ V |
| 25 | | eleq1 2259 |
. . . . . . . . 9
⊢ (𝑧 = {∅} → (𝑧 ∈ On ↔ {∅}
∈ On)) |
| 26 | 25 | 3anbi3d 1329 |
. . . . . . . 8
⊢ (𝑧 = {∅} → ((𝑥 ∈ On ∧ 𝑦 ∈ On ∧ 𝑧 ∈ On) ↔ (𝑥 ∈ On ∧ 𝑦 ∈ On ∧ {∅}
∈ On))) |
| 27 | | eleq2 2260 |
. . . . . . . . . 10
⊢ (𝑧 = {∅} → (𝑥 ∈ 𝑧 ↔ 𝑥 ∈ {∅})) |
| 28 | | eleq1 2259 |
. . . . . . . . . 10
⊢ (𝑧 = {∅} → (𝑧 ∈ 𝑦 ↔ {∅} ∈ 𝑦)) |
| 29 | 27, 28 | orbi12d 794 |
. . . . . . . . 9
⊢ (𝑧 = {∅} → ((𝑥 ∈ 𝑧 ∨ 𝑧 ∈ 𝑦) ↔ (𝑥 ∈ {∅} ∨ {∅} ∈ 𝑦))) |
| 30 | 29 | imbi2d 230 |
. . . . . . . 8
⊢ (𝑧 = {∅} → ((𝑥 ∈ 𝑦 → (𝑥 ∈ 𝑧 ∨ 𝑧 ∈ 𝑦)) ↔ (𝑥 ∈ 𝑦 → (𝑥 ∈ {∅} ∨ {∅} ∈ 𝑦)))) |
| 31 | 26, 30 | imbi12d 234 |
. . . . . . 7
⊢ (𝑧 = {∅} → (((𝑥 ∈ On ∧ 𝑦 ∈ On ∧ 𝑧 ∈ On) → (𝑥 ∈ 𝑦 → (𝑥 ∈ 𝑧 ∨ 𝑧 ∈ 𝑦))) ↔ ((𝑥 ∈ On ∧ 𝑦 ∈ On ∧ {∅} ∈ On) →
(𝑥 ∈ 𝑦 → (𝑥 ∈ {∅} ∨ {∅} ∈ 𝑦))))) |
| 32 | | ordsoexmid.1 |
. . . . . . . . . . 11
⊢ E Or
On |
| 33 | | df-iso 4332 |
. . . . . . . . . . 11
⊢ ( E Or On
↔ ( E Po On ∧ ∀𝑥 ∈ On ∀𝑦 ∈ On ∀𝑧 ∈ On (𝑥 E 𝑦 → (𝑥 E 𝑧 ∨ 𝑧 E 𝑦)))) |
| 34 | 32, 33 | mpbi 145 |
. . . . . . . . . 10
⊢ ( E Po On
∧ ∀𝑥 ∈ On
∀𝑦 ∈ On
∀𝑧 ∈ On (𝑥 E 𝑦 → (𝑥 E 𝑧 ∨ 𝑧 E 𝑦))) |
| 35 | 34 | simpri 113 |
. . . . . . . . 9
⊢
∀𝑥 ∈ On
∀𝑦 ∈ On
∀𝑧 ∈ On (𝑥 E 𝑦 → (𝑥 E 𝑧 ∨ 𝑧 E 𝑦)) |
| 36 | | epel 4327 |
. . . . . . . . . . . 12
⊢ (𝑥 E 𝑦 ↔ 𝑥 ∈ 𝑦) |
| 37 | | epel 4327 |
. . . . . . . . . . . . 13
⊢ (𝑥 E 𝑧 ↔ 𝑥 ∈ 𝑧) |
| 38 | | epel 4327 |
. . . . . . . . . . . . 13
⊢ (𝑧 E 𝑦 ↔ 𝑧 ∈ 𝑦) |
| 39 | 37, 38 | orbi12i 765 |
. . . . . . . . . . . 12
⊢ ((𝑥 E 𝑧 ∨ 𝑧 E 𝑦) ↔ (𝑥 ∈ 𝑧 ∨ 𝑧 ∈ 𝑦)) |
| 40 | 36, 39 | imbi12i 239 |
. . . . . . . . . . 11
⊢ ((𝑥 E 𝑦 → (𝑥 E 𝑧 ∨ 𝑧 E 𝑦)) ↔ (𝑥 ∈ 𝑦 → (𝑥 ∈ 𝑧 ∨ 𝑧 ∈ 𝑦))) |
| 41 | 40 | 2ralbii 2505 |
. . . . . . . . . 10
⊢
(∀𝑦 ∈ On
∀𝑧 ∈ On (𝑥 E 𝑦 → (𝑥 E 𝑧 ∨ 𝑧 E 𝑦)) ↔ ∀𝑦 ∈ On ∀𝑧 ∈ On (𝑥 ∈ 𝑦 → (𝑥 ∈ 𝑧 ∨ 𝑧 ∈ 𝑦))) |
| 42 | 41 | ralbii 2503 |
. . . . . . . . 9
⊢
(∀𝑥 ∈ On
∀𝑦 ∈ On
∀𝑧 ∈ On (𝑥 E 𝑦 → (𝑥 E 𝑧 ∨ 𝑧 E 𝑦)) ↔ ∀𝑥 ∈ On ∀𝑦 ∈ On ∀𝑧 ∈ On (𝑥 ∈ 𝑦 → (𝑥 ∈ 𝑧 ∨ 𝑧 ∈ 𝑦))) |
| 43 | 35, 42 | mpbi 145 |
. . . . . . . 8
⊢
∀𝑥 ∈ On
∀𝑦 ∈ On
∀𝑧 ∈ On (𝑥 ∈ 𝑦 → (𝑥 ∈ 𝑧 ∨ 𝑧 ∈ 𝑦)) |
| 44 | 43 | rspec3 2587 |
. . . . . . 7
⊢ ((𝑥 ∈ On ∧ 𝑦 ∈ On ∧ 𝑧 ∈ On) → (𝑥 ∈ 𝑦 → (𝑥 ∈ 𝑧 ∨ 𝑧 ∈ 𝑦))) |
| 45 | 24, 31, 44 | vtocl 2818 |
. . . . . 6
⊢ ((𝑥 ∈ On ∧ 𝑦 ∈ On ∧ {∅}
∈ On) → (𝑥 ∈
𝑦 → (𝑥 ∈ {∅} ∨ {∅}
∈ 𝑦))) |
| 46 | 16, 23, 45 | vtocl 2818 |
. . . . 5
⊢ ((𝑥 ∈ On ∧ suc {𝑤 ∈ {∅} ∣ 𝜑} ∈ On ∧ {∅} ∈
On) → (𝑥 ∈ suc
{𝑤 ∈ {∅} ∣
𝜑} → (𝑥 ∈ {∅} ∨ {∅} ∈ suc
{𝑤 ∈ {∅} ∣
𝜑}))) |
| 47 | 2, 15, 46 | vtocl 2818 |
. . . 4
⊢ (({𝑤 ∈ {∅} ∣ 𝜑} ∈ On ∧ suc {𝑤 ∈ {∅} ∣ 𝜑} ∈ On ∧ {∅} ∈
On) → ({𝑤 ∈
{∅} ∣ 𝜑} ∈
suc {𝑤 ∈ {∅}
∣ 𝜑} → ({𝑤 ∈ {∅} ∣ 𝜑} ∈ {∅} ∨ {∅}
∈ suc {𝑤 ∈
{∅} ∣ 𝜑}))) |
| 48 | 1, 4, 8, 47 | mp3an 1348 |
. . 3
⊢ ({𝑤 ∈ {∅} ∣ 𝜑} ∈ suc {𝑤 ∈ {∅} ∣ 𝜑} → ({𝑤 ∈ {∅} ∣ 𝜑} ∈ {∅} ∨ {∅} ∈ suc
{𝑤 ∈ {∅} ∣
𝜑})) |
| 49 | 2 | elsn 3638 |
. . . . 5
⊢ ({𝑤 ∈ {∅} ∣ 𝜑} ∈ {∅} ↔ {𝑤 ∈ {∅} ∣ 𝜑} = ∅) |
| 50 | | ordtriexmidlem2 4556 |
. . . . 5
⊢ ({𝑤 ∈ {∅} ∣ 𝜑} = ∅ → ¬ 𝜑) |
| 51 | 49, 50 | sylbi 121 |
. . . 4
⊢ ({𝑤 ∈ {∅} ∣ 𝜑} ∈ {∅} → ¬
𝜑) |
| 52 | | elirr 4577 |
. . . . . . 7
⊢ ¬
{∅} ∈ {∅} |
| 53 | | elrabi 2917 |
. . . . . . 7
⊢
({∅} ∈ {𝑤
∈ {∅} ∣ 𝜑}
→ {∅} ∈ {∅}) |
| 54 | 52, 53 | mto 663 |
. . . . . 6
⊢ ¬
{∅} ∈ {𝑤 ∈
{∅} ∣ 𝜑} |
| 55 | | elsuci 4438 |
. . . . . . 7
⊢
({∅} ∈ suc {𝑤 ∈ {∅} ∣ 𝜑} → ({∅} ∈ {𝑤 ∈ {∅} ∣ 𝜑} ∨ {∅} = {𝑤 ∈ {∅} ∣ 𝜑})) |
| 56 | 55 | ord 725 |
. . . . . 6
⊢
({∅} ∈ suc {𝑤 ∈ {∅} ∣ 𝜑} → (¬ {∅} ∈ {𝑤 ∈ {∅} ∣ 𝜑} → {∅} = {𝑤 ∈ {∅} ∣ 𝜑})) |
| 57 | 54, 56 | mpi 15 |
. . . . 5
⊢
({∅} ∈ suc {𝑤 ∈ {∅} ∣ 𝜑} → {∅} = {𝑤 ∈ {∅} ∣ 𝜑}) |
| 58 | | 0ex 4160 |
. . . . . . 7
⊢ ∅
∈ V |
| 59 | | biidd 172 |
. . . . . . 7
⊢ (𝑤 = ∅ → (𝜑 ↔ 𝜑)) |
| 60 | 58, 59 | rabsnt 3697 |
. . . . . 6
⊢ ({𝑤 ∈ {∅} ∣ 𝜑} = {∅} → 𝜑) |
| 61 | 60 | eqcoms 2199 |
. . . . 5
⊢
({∅} = {𝑤
∈ {∅} ∣ 𝜑}
→ 𝜑) |
| 62 | 57, 61 | syl 14 |
. . . 4
⊢
({∅} ∈ suc {𝑤 ∈ {∅} ∣ 𝜑} → 𝜑) |
| 63 | 51, 62 | orim12i 760 |
. . 3
⊢ (({𝑤 ∈ {∅} ∣ 𝜑} ∈ {∅} ∨ {∅}
∈ suc {𝑤 ∈
{∅} ∣ 𝜑}) →
(¬ 𝜑 ∨ 𝜑)) |
| 64 | 3, 48, 63 | mp2b 8 |
. 2
⊢ (¬
𝜑 ∨ 𝜑) |
| 65 | | orcom 729 |
. 2
⊢ ((¬
𝜑 ∨ 𝜑) ↔ (𝜑 ∨ ¬ 𝜑)) |
| 66 | 64, 65 | mpbi 145 |
1
⊢ (𝜑 ∨ ¬ 𝜑) |