ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ordsoexmid GIF version

Theorem ordsoexmid 4563
Description: Weak linearity of ordinals implies the law of the excluded middle (that is, decidability of an arbitrary proposition). (Contributed by Mario Carneiro and Jim Kingdon, 29-Jan-2019.)
Hypothesis
Ref Expression
ordsoexmid.1 E Or On
Assertion
Ref Expression
ordsoexmid (𝜑 ∨ ¬ 𝜑)

Proof of Theorem ordsoexmid
Dummy variables 𝑥 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ordtriexmidlem 4520 . . . . 5 {𝑤 ∈ {∅} ∣ 𝜑} ∈ On
21elexi 2751 . . . 4 {𝑤 ∈ {∅} ∣ 𝜑} ∈ V
32sucid 4419 . . 3 {𝑤 ∈ {∅} ∣ 𝜑} ∈ suc {𝑤 ∈ {∅} ∣ 𝜑}
41onsuci 4517 . . . 4 suc {𝑤 ∈ {∅} ∣ 𝜑} ∈ On
5 suc0 4413 . . . . 5 suc ∅ = {∅}
6 0elon 4394 . . . . . 6 ∅ ∈ On
76onsuci 4517 . . . . 5 suc ∅ ∈ On
85, 7eqeltrri 2251 . . . 4 {∅} ∈ On
9 eleq1 2240 . . . . . . 7 (𝑥 = {𝑤 ∈ {∅} ∣ 𝜑} → (𝑥 ∈ On ↔ {𝑤 ∈ {∅} ∣ 𝜑} ∈ On))
1093anbi1d 1316 . . . . . 6 (𝑥 = {𝑤 ∈ {∅} ∣ 𝜑} → ((𝑥 ∈ On ∧ suc {𝑤 ∈ {∅} ∣ 𝜑} ∈ On ∧ {∅} ∈ On) ↔ ({𝑤 ∈ {∅} ∣ 𝜑} ∈ On ∧ suc {𝑤 ∈ {∅} ∣ 𝜑} ∈ On ∧ {∅} ∈ On)))
11 eleq1 2240 . . . . . . 7 (𝑥 = {𝑤 ∈ {∅} ∣ 𝜑} → (𝑥 ∈ suc {𝑤 ∈ {∅} ∣ 𝜑} ↔ {𝑤 ∈ {∅} ∣ 𝜑} ∈ suc {𝑤 ∈ {∅} ∣ 𝜑}))
12 eleq1 2240 . . . . . . . 8 (𝑥 = {𝑤 ∈ {∅} ∣ 𝜑} → (𝑥 ∈ {∅} ↔ {𝑤 ∈ {∅} ∣ 𝜑} ∈ {∅}))
1312orbi1d 791 . . . . . . 7 (𝑥 = {𝑤 ∈ {∅} ∣ 𝜑} → ((𝑥 ∈ {∅} ∨ {∅} ∈ suc {𝑤 ∈ {∅} ∣ 𝜑}) ↔ ({𝑤 ∈ {∅} ∣ 𝜑} ∈ {∅} ∨ {∅} ∈ suc {𝑤 ∈ {∅} ∣ 𝜑})))
1411, 13imbi12d 234 . . . . . 6 (𝑥 = {𝑤 ∈ {∅} ∣ 𝜑} → ((𝑥 ∈ suc {𝑤 ∈ {∅} ∣ 𝜑} → (𝑥 ∈ {∅} ∨ {∅} ∈ suc {𝑤 ∈ {∅} ∣ 𝜑})) ↔ ({𝑤 ∈ {∅} ∣ 𝜑} ∈ suc {𝑤 ∈ {∅} ∣ 𝜑} → ({𝑤 ∈ {∅} ∣ 𝜑} ∈ {∅} ∨ {∅} ∈ suc {𝑤 ∈ {∅} ∣ 𝜑}))))
1510, 14imbi12d 234 . . . . 5 (𝑥 = {𝑤 ∈ {∅} ∣ 𝜑} → (((𝑥 ∈ On ∧ suc {𝑤 ∈ {∅} ∣ 𝜑} ∈ On ∧ {∅} ∈ On) → (𝑥 ∈ suc {𝑤 ∈ {∅} ∣ 𝜑} → (𝑥 ∈ {∅} ∨ {∅} ∈ suc {𝑤 ∈ {∅} ∣ 𝜑}))) ↔ (({𝑤 ∈ {∅} ∣ 𝜑} ∈ On ∧ suc {𝑤 ∈ {∅} ∣ 𝜑} ∈ On ∧ {∅} ∈ On) → ({𝑤 ∈ {∅} ∣ 𝜑} ∈ suc {𝑤 ∈ {∅} ∣ 𝜑} → ({𝑤 ∈ {∅} ∣ 𝜑} ∈ {∅} ∨ {∅} ∈ suc {𝑤 ∈ {∅} ∣ 𝜑})))))
164elexi 2751 . . . . . 6 suc {𝑤 ∈ {∅} ∣ 𝜑} ∈ V
17 eleq1 2240 . . . . . . . 8 (𝑦 = suc {𝑤 ∈ {∅} ∣ 𝜑} → (𝑦 ∈ On ↔ suc {𝑤 ∈ {∅} ∣ 𝜑} ∈ On))
18173anbi2d 1317 . . . . . . 7 (𝑦 = suc {𝑤 ∈ {∅} ∣ 𝜑} → ((𝑥 ∈ On ∧ 𝑦 ∈ On ∧ {∅} ∈ On) ↔ (𝑥 ∈ On ∧ suc {𝑤 ∈ {∅} ∣ 𝜑} ∈ On ∧ {∅} ∈ On)))
19 eleq2 2241 . . . . . . . 8 (𝑦 = suc {𝑤 ∈ {∅} ∣ 𝜑} → (𝑥𝑦𝑥 ∈ suc {𝑤 ∈ {∅} ∣ 𝜑}))
20 eleq2 2241 . . . . . . . . 9 (𝑦 = suc {𝑤 ∈ {∅} ∣ 𝜑} → ({∅} ∈ 𝑦 ↔ {∅} ∈ suc {𝑤 ∈ {∅} ∣ 𝜑}))
2120orbi2d 790 . . . . . . . 8 (𝑦 = suc {𝑤 ∈ {∅} ∣ 𝜑} → ((𝑥 ∈ {∅} ∨ {∅} ∈ 𝑦) ↔ (𝑥 ∈ {∅} ∨ {∅} ∈ suc {𝑤 ∈ {∅} ∣ 𝜑})))
2219, 21imbi12d 234 . . . . . . 7 (𝑦 = suc {𝑤 ∈ {∅} ∣ 𝜑} → ((𝑥𝑦 → (𝑥 ∈ {∅} ∨ {∅} ∈ 𝑦)) ↔ (𝑥 ∈ suc {𝑤 ∈ {∅} ∣ 𝜑} → (𝑥 ∈ {∅} ∨ {∅} ∈ suc {𝑤 ∈ {∅} ∣ 𝜑}))))
2318, 22imbi12d 234 . . . . . 6 (𝑦 = suc {𝑤 ∈ {∅} ∣ 𝜑} → (((𝑥 ∈ On ∧ 𝑦 ∈ On ∧ {∅} ∈ On) → (𝑥𝑦 → (𝑥 ∈ {∅} ∨ {∅} ∈ 𝑦))) ↔ ((𝑥 ∈ On ∧ suc {𝑤 ∈ {∅} ∣ 𝜑} ∈ On ∧ {∅} ∈ On) → (𝑥 ∈ suc {𝑤 ∈ {∅} ∣ 𝜑} → (𝑥 ∈ {∅} ∨ {∅} ∈ suc {𝑤 ∈ {∅} ∣ 𝜑})))))
24 p0ex 4190 . . . . . . 7 {∅} ∈ V
25 eleq1 2240 . . . . . . . . 9 (𝑧 = {∅} → (𝑧 ∈ On ↔ {∅} ∈ On))
26253anbi3d 1318 . . . . . . . 8 (𝑧 = {∅} → ((𝑥 ∈ On ∧ 𝑦 ∈ On ∧ 𝑧 ∈ On) ↔ (𝑥 ∈ On ∧ 𝑦 ∈ On ∧ {∅} ∈ On)))
27 eleq2 2241 . . . . . . . . . 10 (𝑧 = {∅} → (𝑥𝑧𝑥 ∈ {∅}))
28 eleq1 2240 . . . . . . . . . 10 (𝑧 = {∅} → (𝑧𝑦 ↔ {∅} ∈ 𝑦))
2927, 28orbi12d 793 . . . . . . . . 9 (𝑧 = {∅} → ((𝑥𝑧𝑧𝑦) ↔ (𝑥 ∈ {∅} ∨ {∅} ∈ 𝑦)))
3029imbi2d 230 . . . . . . . 8 (𝑧 = {∅} → ((𝑥𝑦 → (𝑥𝑧𝑧𝑦)) ↔ (𝑥𝑦 → (𝑥 ∈ {∅} ∨ {∅} ∈ 𝑦))))
3126, 30imbi12d 234 . . . . . . 7 (𝑧 = {∅} → (((𝑥 ∈ On ∧ 𝑦 ∈ On ∧ 𝑧 ∈ On) → (𝑥𝑦 → (𝑥𝑧𝑧𝑦))) ↔ ((𝑥 ∈ On ∧ 𝑦 ∈ On ∧ {∅} ∈ On) → (𝑥𝑦 → (𝑥 ∈ {∅} ∨ {∅} ∈ 𝑦)))))
32 ordsoexmid.1 . . . . . . . . . . 11 E Or On
33 df-iso 4299 . . . . . . . . . . 11 ( E Or On ↔ ( E Po On ∧ ∀𝑥 ∈ On ∀𝑦 ∈ On ∀𝑧 ∈ On (𝑥 E 𝑦 → (𝑥 E 𝑧𝑧 E 𝑦))))
3432, 33mpbi 145 . . . . . . . . . 10 ( E Po On ∧ ∀𝑥 ∈ On ∀𝑦 ∈ On ∀𝑧 ∈ On (𝑥 E 𝑦 → (𝑥 E 𝑧𝑧 E 𝑦)))
3534simpri 113 . . . . . . . . 9 𝑥 ∈ On ∀𝑦 ∈ On ∀𝑧 ∈ On (𝑥 E 𝑦 → (𝑥 E 𝑧𝑧 E 𝑦))
36 epel 4294 . . . . . . . . . . . 12 (𝑥 E 𝑦𝑥𝑦)
37 epel 4294 . . . . . . . . . . . . 13 (𝑥 E 𝑧𝑥𝑧)
38 epel 4294 . . . . . . . . . . . . 13 (𝑧 E 𝑦𝑧𝑦)
3937, 38orbi12i 764 . . . . . . . . . . . 12 ((𝑥 E 𝑧𝑧 E 𝑦) ↔ (𝑥𝑧𝑧𝑦))
4036, 39imbi12i 239 . . . . . . . . . . 11 ((𝑥 E 𝑦 → (𝑥 E 𝑧𝑧 E 𝑦)) ↔ (𝑥𝑦 → (𝑥𝑧𝑧𝑦)))
41402ralbii 2485 . . . . . . . . . 10 (∀𝑦 ∈ On ∀𝑧 ∈ On (𝑥 E 𝑦 → (𝑥 E 𝑧𝑧 E 𝑦)) ↔ ∀𝑦 ∈ On ∀𝑧 ∈ On (𝑥𝑦 → (𝑥𝑧𝑧𝑦)))
4241ralbii 2483 . . . . . . . . 9 (∀𝑥 ∈ On ∀𝑦 ∈ On ∀𝑧 ∈ On (𝑥 E 𝑦 → (𝑥 E 𝑧𝑧 E 𝑦)) ↔ ∀𝑥 ∈ On ∀𝑦 ∈ On ∀𝑧 ∈ On (𝑥𝑦 → (𝑥𝑧𝑧𝑦)))
4335, 42mpbi 145 . . . . . . . 8 𝑥 ∈ On ∀𝑦 ∈ On ∀𝑧 ∈ On (𝑥𝑦 → (𝑥𝑧𝑧𝑦))
4443rspec3 2567 . . . . . . 7 ((𝑥 ∈ On ∧ 𝑦 ∈ On ∧ 𝑧 ∈ On) → (𝑥𝑦 → (𝑥𝑧𝑧𝑦)))
4524, 31, 44vtocl 2793 . . . . . 6 ((𝑥 ∈ On ∧ 𝑦 ∈ On ∧ {∅} ∈ On) → (𝑥𝑦 → (𝑥 ∈ {∅} ∨ {∅} ∈ 𝑦)))
4616, 23, 45vtocl 2793 . . . . 5 ((𝑥 ∈ On ∧ suc {𝑤 ∈ {∅} ∣ 𝜑} ∈ On ∧ {∅} ∈ On) → (𝑥 ∈ suc {𝑤 ∈ {∅} ∣ 𝜑} → (𝑥 ∈ {∅} ∨ {∅} ∈ suc {𝑤 ∈ {∅} ∣ 𝜑})))
472, 15, 46vtocl 2793 . . . 4 (({𝑤 ∈ {∅} ∣ 𝜑} ∈ On ∧ suc {𝑤 ∈ {∅} ∣ 𝜑} ∈ On ∧ {∅} ∈ On) → ({𝑤 ∈ {∅} ∣ 𝜑} ∈ suc {𝑤 ∈ {∅} ∣ 𝜑} → ({𝑤 ∈ {∅} ∣ 𝜑} ∈ {∅} ∨ {∅} ∈ suc {𝑤 ∈ {∅} ∣ 𝜑})))
481, 4, 8, 47mp3an 1337 . . 3 ({𝑤 ∈ {∅} ∣ 𝜑} ∈ suc {𝑤 ∈ {∅} ∣ 𝜑} → ({𝑤 ∈ {∅} ∣ 𝜑} ∈ {∅} ∨ {∅} ∈ suc {𝑤 ∈ {∅} ∣ 𝜑}))
492elsn 3610 . . . . 5 ({𝑤 ∈ {∅} ∣ 𝜑} ∈ {∅} ↔ {𝑤 ∈ {∅} ∣ 𝜑} = ∅)
50 ordtriexmidlem2 4521 . . . . 5 ({𝑤 ∈ {∅} ∣ 𝜑} = ∅ → ¬ 𝜑)
5149, 50sylbi 121 . . . 4 ({𝑤 ∈ {∅} ∣ 𝜑} ∈ {∅} → ¬ 𝜑)
52 elirr 4542 . . . . . . 7 ¬ {∅} ∈ {∅}
53 elrabi 2892 . . . . . . 7 ({∅} ∈ {𝑤 ∈ {∅} ∣ 𝜑} → {∅} ∈ {∅})
5452, 53mto 662 . . . . . 6 ¬ {∅} ∈ {𝑤 ∈ {∅} ∣ 𝜑}
55 elsuci 4405 . . . . . . 7 ({∅} ∈ suc {𝑤 ∈ {∅} ∣ 𝜑} → ({∅} ∈ {𝑤 ∈ {∅} ∣ 𝜑} ∨ {∅} = {𝑤 ∈ {∅} ∣ 𝜑}))
5655ord 724 . . . . . 6 ({∅} ∈ suc {𝑤 ∈ {∅} ∣ 𝜑} → (¬ {∅} ∈ {𝑤 ∈ {∅} ∣ 𝜑} → {∅} = {𝑤 ∈ {∅} ∣ 𝜑}))
5754, 56mpi 15 . . . . 5 ({∅} ∈ suc {𝑤 ∈ {∅} ∣ 𝜑} → {∅} = {𝑤 ∈ {∅} ∣ 𝜑})
58 0ex 4132 . . . . . . 7 ∅ ∈ V
59 biidd 172 . . . . . . 7 (𝑤 = ∅ → (𝜑𝜑))
6058, 59rabsnt 3669 . . . . . 6 ({𝑤 ∈ {∅} ∣ 𝜑} = {∅} → 𝜑)
6160eqcoms 2180 . . . . 5 ({∅} = {𝑤 ∈ {∅} ∣ 𝜑} → 𝜑)
6257, 61syl 14 . . . 4 ({∅} ∈ suc {𝑤 ∈ {∅} ∣ 𝜑} → 𝜑)
6351, 62orim12i 759 . . 3 (({𝑤 ∈ {∅} ∣ 𝜑} ∈ {∅} ∨ {∅} ∈ suc {𝑤 ∈ {∅} ∣ 𝜑}) → (¬ 𝜑𝜑))
643, 48, 63mp2b 8 . 2 𝜑𝜑)
65 orcom 728 . 2 ((¬ 𝜑𝜑) ↔ (𝜑 ∨ ¬ 𝜑))
6664, 65mpbi 145 1 (𝜑 ∨ ¬ 𝜑)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wo 708  w3a 978   = wceq 1353  wcel 2148  wral 2455  {crab 2459  c0 3424  {csn 3594   class class class wbr 4005   E cep 4289   Po wpo 4296   Or wor 4297  Oncon0 4365  suc csuc 4367
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2741  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-br 4006  df-opab 4067  df-tr 4104  df-eprel 4291  df-iso 4299  df-iord 4368  df-on 4370  df-suc 4373
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator