ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ordsoexmid GIF version

Theorem ordsoexmid 4406
Description: Weak linearity of ordinals implies the law of the excluded middle (that is, decidability of an arbitrary proposition). (Contributed by Mario Carneiro and Jim Kingdon, 29-Jan-2019.)
Hypothesis
Ref Expression
ordsoexmid.1 E Or On
Assertion
Ref Expression
ordsoexmid (𝜑 ∨ ¬ 𝜑)

Proof of Theorem ordsoexmid
Dummy variables 𝑥 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ordtriexmidlem 4364 . . . . 5 {𝑤 ∈ {∅} ∣ 𝜑} ∈ On
21elexi 2645 . . . 4 {𝑤 ∈ {∅} ∣ 𝜑} ∈ V
32sucid 4268 . . 3 {𝑤 ∈ {∅} ∣ 𝜑} ∈ suc {𝑤 ∈ {∅} ∣ 𝜑}
41onsuci 4361 . . . 4 suc {𝑤 ∈ {∅} ∣ 𝜑} ∈ On
5 suc0 4262 . . . . 5 suc ∅ = {∅}
6 0elon 4243 . . . . . 6 ∅ ∈ On
76onsuci 4361 . . . . 5 suc ∅ ∈ On
85, 7eqeltrri 2168 . . . 4 {∅} ∈ On
9 eleq1 2157 . . . . . . 7 (𝑥 = {𝑤 ∈ {∅} ∣ 𝜑} → (𝑥 ∈ On ↔ {𝑤 ∈ {∅} ∣ 𝜑} ∈ On))
1093anbi1d 1259 . . . . . 6 (𝑥 = {𝑤 ∈ {∅} ∣ 𝜑} → ((𝑥 ∈ On ∧ suc {𝑤 ∈ {∅} ∣ 𝜑} ∈ On ∧ {∅} ∈ On) ↔ ({𝑤 ∈ {∅} ∣ 𝜑} ∈ On ∧ suc {𝑤 ∈ {∅} ∣ 𝜑} ∈ On ∧ {∅} ∈ On)))
11 eleq1 2157 . . . . . . 7 (𝑥 = {𝑤 ∈ {∅} ∣ 𝜑} → (𝑥 ∈ suc {𝑤 ∈ {∅} ∣ 𝜑} ↔ {𝑤 ∈ {∅} ∣ 𝜑} ∈ suc {𝑤 ∈ {∅} ∣ 𝜑}))
12 eleq1 2157 . . . . . . . 8 (𝑥 = {𝑤 ∈ {∅} ∣ 𝜑} → (𝑥 ∈ {∅} ↔ {𝑤 ∈ {∅} ∣ 𝜑} ∈ {∅}))
1312orbi1d 743 . . . . . . 7 (𝑥 = {𝑤 ∈ {∅} ∣ 𝜑} → ((𝑥 ∈ {∅} ∨ {∅} ∈ suc {𝑤 ∈ {∅} ∣ 𝜑}) ↔ ({𝑤 ∈ {∅} ∣ 𝜑} ∈ {∅} ∨ {∅} ∈ suc {𝑤 ∈ {∅} ∣ 𝜑})))
1411, 13imbi12d 233 . . . . . 6 (𝑥 = {𝑤 ∈ {∅} ∣ 𝜑} → ((𝑥 ∈ suc {𝑤 ∈ {∅} ∣ 𝜑} → (𝑥 ∈ {∅} ∨ {∅} ∈ suc {𝑤 ∈ {∅} ∣ 𝜑})) ↔ ({𝑤 ∈ {∅} ∣ 𝜑} ∈ suc {𝑤 ∈ {∅} ∣ 𝜑} → ({𝑤 ∈ {∅} ∣ 𝜑} ∈ {∅} ∨ {∅} ∈ suc {𝑤 ∈ {∅} ∣ 𝜑}))))
1510, 14imbi12d 233 . . . . 5 (𝑥 = {𝑤 ∈ {∅} ∣ 𝜑} → (((𝑥 ∈ On ∧ suc {𝑤 ∈ {∅} ∣ 𝜑} ∈ On ∧ {∅} ∈ On) → (𝑥 ∈ suc {𝑤 ∈ {∅} ∣ 𝜑} → (𝑥 ∈ {∅} ∨ {∅} ∈ suc {𝑤 ∈ {∅} ∣ 𝜑}))) ↔ (({𝑤 ∈ {∅} ∣ 𝜑} ∈ On ∧ suc {𝑤 ∈ {∅} ∣ 𝜑} ∈ On ∧ {∅} ∈ On) → ({𝑤 ∈ {∅} ∣ 𝜑} ∈ suc {𝑤 ∈ {∅} ∣ 𝜑} → ({𝑤 ∈ {∅} ∣ 𝜑} ∈ {∅} ∨ {∅} ∈ suc {𝑤 ∈ {∅} ∣ 𝜑})))))
164elexi 2645 . . . . . 6 suc {𝑤 ∈ {∅} ∣ 𝜑} ∈ V
17 eleq1 2157 . . . . . . . 8 (𝑦 = suc {𝑤 ∈ {∅} ∣ 𝜑} → (𝑦 ∈ On ↔ suc {𝑤 ∈ {∅} ∣ 𝜑} ∈ On))
18173anbi2d 1260 . . . . . . 7 (𝑦 = suc {𝑤 ∈ {∅} ∣ 𝜑} → ((𝑥 ∈ On ∧ 𝑦 ∈ On ∧ {∅} ∈ On) ↔ (𝑥 ∈ On ∧ suc {𝑤 ∈ {∅} ∣ 𝜑} ∈ On ∧ {∅} ∈ On)))
19 eleq2 2158 . . . . . . . 8 (𝑦 = suc {𝑤 ∈ {∅} ∣ 𝜑} → (𝑥𝑦𝑥 ∈ suc {𝑤 ∈ {∅} ∣ 𝜑}))
20 eleq2 2158 . . . . . . . . 9 (𝑦 = suc {𝑤 ∈ {∅} ∣ 𝜑} → ({∅} ∈ 𝑦 ↔ {∅} ∈ suc {𝑤 ∈ {∅} ∣ 𝜑}))
2120orbi2d 742 . . . . . . . 8 (𝑦 = suc {𝑤 ∈ {∅} ∣ 𝜑} → ((𝑥 ∈ {∅} ∨ {∅} ∈ 𝑦) ↔ (𝑥 ∈ {∅} ∨ {∅} ∈ suc {𝑤 ∈ {∅} ∣ 𝜑})))
2219, 21imbi12d 233 . . . . . . 7 (𝑦 = suc {𝑤 ∈ {∅} ∣ 𝜑} → ((𝑥𝑦 → (𝑥 ∈ {∅} ∨ {∅} ∈ 𝑦)) ↔ (𝑥 ∈ suc {𝑤 ∈ {∅} ∣ 𝜑} → (𝑥 ∈ {∅} ∨ {∅} ∈ suc {𝑤 ∈ {∅} ∣ 𝜑}))))
2318, 22imbi12d 233 . . . . . 6 (𝑦 = suc {𝑤 ∈ {∅} ∣ 𝜑} → (((𝑥 ∈ On ∧ 𝑦 ∈ On ∧ {∅} ∈ On) → (𝑥𝑦 → (𝑥 ∈ {∅} ∨ {∅} ∈ 𝑦))) ↔ ((𝑥 ∈ On ∧ suc {𝑤 ∈ {∅} ∣ 𝜑} ∈ On ∧ {∅} ∈ On) → (𝑥 ∈ suc {𝑤 ∈ {∅} ∣ 𝜑} → (𝑥 ∈ {∅} ∨ {∅} ∈ suc {𝑤 ∈ {∅} ∣ 𝜑})))))
24 p0ex 4044 . . . . . . 7 {∅} ∈ V
25 eleq1 2157 . . . . . . . . 9 (𝑧 = {∅} → (𝑧 ∈ On ↔ {∅} ∈ On))
26253anbi3d 1261 . . . . . . . 8 (𝑧 = {∅} → ((𝑥 ∈ On ∧ 𝑦 ∈ On ∧ 𝑧 ∈ On) ↔ (𝑥 ∈ On ∧ 𝑦 ∈ On ∧ {∅} ∈ On)))
27 eleq2 2158 . . . . . . . . . 10 (𝑧 = {∅} → (𝑥𝑧𝑥 ∈ {∅}))
28 eleq1 2157 . . . . . . . . . 10 (𝑧 = {∅} → (𝑧𝑦 ↔ {∅} ∈ 𝑦))
2927, 28orbi12d 745 . . . . . . . . 9 (𝑧 = {∅} → ((𝑥𝑧𝑧𝑦) ↔ (𝑥 ∈ {∅} ∨ {∅} ∈ 𝑦)))
3029imbi2d 229 . . . . . . . 8 (𝑧 = {∅} → ((𝑥𝑦 → (𝑥𝑧𝑧𝑦)) ↔ (𝑥𝑦 → (𝑥 ∈ {∅} ∨ {∅} ∈ 𝑦))))
3126, 30imbi12d 233 . . . . . . 7 (𝑧 = {∅} → (((𝑥 ∈ On ∧ 𝑦 ∈ On ∧ 𝑧 ∈ On) → (𝑥𝑦 → (𝑥𝑧𝑧𝑦))) ↔ ((𝑥 ∈ On ∧ 𝑦 ∈ On ∧ {∅} ∈ On) → (𝑥𝑦 → (𝑥 ∈ {∅} ∨ {∅} ∈ 𝑦)))))
32 ordsoexmid.1 . . . . . . . . . . 11 E Or On
33 df-iso 4148 . . . . . . . . . . 11 ( E Or On ↔ ( E Po On ∧ ∀𝑥 ∈ On ∀𝑦 ∈ On ∀𝑧 ∈ On (𝑥 E 𝑦 → (𝑥 E 𝑧𝑧 E 𝑦))))
3432, 33mpbi 144 . . . . . . . . . 10 ( E Po On ∧ ∀𝑥 ∈ On ∀𝑦 ∈ On ∀𝑧 ∈ On (𝑥 E 𝑦 → (𝑥 E 𝑧𝑧 E 𝑦)))
3534simpri 112 . . . . . . . . 9 𝑥 ∈ On ∀𝑦 ∈ On ∀𝑧 ∈ On (𝑥 E 𝑦 → (𝑥 E 𝑧𝑧 E 𝑦))
36 epel 4143 . . . . . . . . . . . 12 (𝑥 E 𝑦𝑥𝑦)
37 epel 4143 . . . . . . . . . . . . 13 (𝑥 E 𝑧𝑥𝑧)
38 epel 4143 . . . . . . . . . . . . 13 (𝑧 E 𝑦𝑧𝑦)
3937, 38orbi12i 719 . . . . . . . . . . . 12 ((𝑥 E 𝑧𝑧 E 𝑦) ↔ (𝑥𝑧𝑧𝑦))
4036, 39imbi12i 238 . . . . . . . . . . 11 ((𝑥 E 𝑦 → (𝑥 E 𝑧𝑧 E 𝑦)) ↔ (𝑥𝑦 → (𝑥𝑧𝑧𝑦)))
41402ralbii 2397 . . . . . . . . . 10 (∀𝑦 ∈ On ∀𝑧 ∈ On (𝑥 E 𝑦 → (𝑥 E 𝑧𝑧 E 𝑦)) ↔ ∀𝑦 ∈ On ∀𝑧 ∈ On (𝑥𝑦 → (𝑥𝑧𝑧𝑦)))
4241ralbii 2395 . . . . . . . . 9 (∀𝑥 ∈ On ∀𝑦 ∈ On ∀𝑧 ∈ On (𝑥 E 𝑦 → (𝑥 E 𝑧𝑧 E 𝑦)) ↔ ∀𝑥 ∈ On ∀𝑦 ∈ On ∀𝑧 ∈ On (𝑥𝑦 → (𝑥𝑧𝑧𝑦)))
4335, 42mpbi 144 . . . . . . . 8 𝑥 ∈ On ∀𝑦 ∈ On ∀𝑧 ∈ On (𝑥𝑦 → (𝑥𝑧𝑧𝑦))
4443rspec3 2475 . . . . . . 7 ((𝑥 ∈ On ∧ 𝑦 ∈ On ∧ 𝑧 ∈ On) → (𝑥𝑦 → (𝑥𝑧𝑧𝑦)))
4524, 31, 44vtocl 2687 . . . . . 6 ((𝑥 ∈ On ∧ 𝑦 ∈ On ∧ {∅} ∈ On) → (𝑥𝑦 → (𝑥 ∈ {∅} ∨ {∅} ∈ 𝑦)))
4616, 23, 45vtocl 2687 . . . . 5 ((𝑥 ∈ On ∧ suc {𝑤 ∈ {∅} ∣ 𝜑} ∈ On ∧ {∅} ∈ On) → (𝑥 ∈ suc {𝑤 ∈ {∅} ∣ 𝜑} → (𝑥 ∈ {∅} ∨ {∅} ∈ suc {𝑤 ∈ {∅} ∣ 𝜑})))
472, 15, 46vtocl 2687 . . . 4 (({𝑤 ∈ {∅} ∣ 𝜑} ∈ On ∧ suc {𝑤 ∈ {∅} ∣ 𝜑} ∈ On ∧ {∅} ∈ On) → ({𝑤 ∈ {∅} ∣ 𝜑} ∈ suc {𝑤 ∈ {∅} ∣ 𝜑} → ({𝑤 ∈ {∅} ∣ 𝜑} ∈ {∅} ∨ {∅} ∈ suc {𝑤 ∈ {∅} ∣ 𝜑})))
481, 4, 8, 47mp3an 1280 . . 3 ({𝑤 ∈ {∅} ∣ 𝜑} ∈ suc {𝑤 ∈ {∅} ∣ 𝜑} → ({𝑤 ∈ {∅} ∣ 𝜑} ∈ {∅} ∨ {∅} ∈ suc {𝑤 ∈ {∅} ∣ 𝜑}))
492elsn 3482 . . . . 5 ({𝑤 ∈ {∅} ∣ 𝜑} ∈ {∅} ↔ {𝑤 ∈ {∅} ∣ 𝜑} = ∅)
50 ordtriexmidlem2 4365 . . . . 5 ({𝑤 ∈ {∅} ∣ 𝜑} = ∅ → ¬ 𝜑)
5149, 50sylbi 120 . . . 4 ({𝑤 ∈ {∅} ∣ 𝜑} ∈ {∅} → ¬ 𝜑)
52 elirr 4385 . . . . . . 7 ¬ {∅} ∈ {∅}
53 elrabi 2782 . . . . . . 7 ({∅} ∈ {𝑤 ∈ {∅} ∣ 𝜑} → {∅} ∈ {∅})
5452, 53mto 626 . . . . . 6 ¬ {∅} ∈ {𝑤 ∈ {∅} ∣ 𝜑}
55 elsuci 4254 . . . . . . 7 ({∅} ∈ suc {𝑤 ∈ {∅} ∣ 𝜑} → ({∅} ∈ {𝑤 ∈ {∅} ∣ 𝜑} ∨ {∅} = {𝑤 ∈ {∅} ∣ 𝜑}))
5655ord 681 . . . . . 6 ({∅} ∈ suc {𝑤 ∈ {∅} ∣ 𝜑} → (¬ {∅} ∈ {𝑤 ∈ {∅} ∣ 𝜑} → {∅} = {𝑤 ∈ {∅} ∣ 𝜑}))
5754, 56mpi 15 . . . . 5 ({∅} ∈ suc {𝑤 ∈ {∅} ∣ 𝜑} → {∅} = {𝑤 ∈ {∅} ∣ 𝜑})
58 0ex 3987 . . . . . . 7 ∅ ∈ V
59 biidd 171 . . . . . . 7 (𝑤 = ∅ → (𝜑𝜑))
6058, 59rabsnt 3537 . . . . . 6 ({𝑤 ∈ {∅} ∣ 𝜑} = {∅} → 𝜑)
6160eqcoms 2098 . . . . 5 ({∅} = {𝑤 ∈ {∅} ∣ 𝜑} → 𝜑)
6257, 61syl 14 . . . 4 ({∅} ∈ suc {𝑤 ∈ {∅} ∣ 𝜑} → 𝜑)
6351, 62orim12i 714 . . 3 (({𝑤 ∈ {∅} ∣ 𝜑} ∈ {∅} ∨ {∅} ∈ suc {𝑤 ∈ {∅} ∣ 𝜑}) → (¬ 𝜑𝜑))
643, 48, 63mp2b 8 . 2 𝜑𝜑)
65 orcom 685 . 2 ((¬ 𝜑𝜑) ↔ (𝜑 ∨ ¬ 𝜑))
6664, 65mpbi 144 1 (𝜑 ∨ ¬ 𝜑)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wo 667  w3a 927   = wceq 1296  wcel 1445  wral 2370  {crab 2374  c0 3302  {csn 3466   class class class wbr 3867   E cep 4138   Po wpo 4145   Or wor 4146  Oncon0 4214  suc csuc 4216
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 582  ax-in2 583  ax-io 668  ax-5 1388  ax-7 1389  ax-gen 1390  ax-ie1 1434  ax-ie2 1435  ax-8 1447  ax-10 1448  ax-11 1449  ax-i12 1450  ax-bndl 1451  ax-4 1452  ax-13 1456  ax-14 1457  ax-17 1471  ax-i9 1475  ax-ial 1479  ax-i5r 1480  ax-ext 2077  ax-sep 3978  ax-nul 3986  ax-pow 4030  ax-pr 4060  ax-un 4284  ax-setind 4381
This theorem depends on definitions:  df-bi 116  df-3an 929  df-tru 1299  df-nf 1402  df-sb 1700  df-eu 1958  df-mo 1959  df-clab 2082  df-cleq 2088  df-clel 2091  df-nfc 2224  df-ne 2263  df-ral 2375  df-rex 2376  df-rab 2379  df-v 2635  df-dif 3015  df-un 3017  df-in 3019  df-ss 3026  df-nul 3303  df-pw 3451  df-sn 3472  df-pr 3473  df-op 3475  df-uni 3676  df-br 3868  df-opab 3922  df-tr 3959  df-eprel 4140  df-iso 4148  df-iord 4217  df-on 4219  df-suc 4222
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator