| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3impa | GIF version | ||
| Description: Importation from double to triple conjunction. (Contributed by NM, 20-Aug-1995.) |
| Ref | Expression |
|---|---|
| 3impa.1 | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| 3impa | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3impa.1 | . . 3 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) | |
| 2 | 1 | exp31 364 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
| 3 | 2 | 3imp 1195 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 980 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 982 |
| This theorem is referenced by: ex3 1197 3impdir 1305 syl3an9b 1321 biimp3a 1356 stoic3 1442 rspec3 2587 rspc3v 2884 raltpg 3676 rextpg 3677 disjiun 4029 otexg 4264 opelopabt 4297 tpexg 4480 3optocl 4742 fun2ssres 5302 funssfv 5585 fvun1 5628 foco2 5801 f1elima 5821 eloprabga 6010 caovimo 6118 ot1stg 6211 ot2ndg 6212 ot3rdgg 6213 brtposg 6313 rdgexggg 6436 rdgivallem 6440 nnmass 6546 nndir 6549 nnaword 6570 th3q 6700 ecovass 6704 ecoviass 6705 fpmg 6734 findcard 6950 unfiin 6988 addasspig 7399 mulasspig 7401 mulcanpig 7404 ltapig 7407 ltmpig 7408 addassnqg 7451 ltbtwnnqq 7484 mulnnnq0 7519 addassnq0 7531 genpassl 7593 genpassu 7594 genpassg 7595 aptiprleml 7708 adddir 8019 le2tri3i 8137 addsub12 8241 subdir 8414 reapmul1 8624 recexaplem2 8681 div12ap 8723 divdiv32ap 8749 divdivap1 8752 lble 8976 zaddcllemneg 9367 fnn0ind 9444 xrltso 9873 iccgelb 10009 elicc4 10017 elfz 10091 fzrevral 10182 expnegap0 10641 expgt0 10666 expge0 10669 expge1 10670 mulexpzap 10673 expp1zap 10682 expm1ap 10683 apexp1 10812 abssubap0 11257 binom 11651 dvds0lem 11968 dvdsnegb 11975 muldvds1 11983 muldvds2 11984 divalgmodcl 12095 gcd2n0cl 12146 lcmdvds 12257 prmdvdsexp 12326 rpexp1i 12332 eqglact 13365 lss0cl 13935 cnpval 14444 cnf2 14451 cnnei 14478 blssec 14684 blpnfctr 14685 mopni2 14729 mopni3 14730 dvply1 15011 |
| Copyright terms: Public domain | W3C validator |