| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3impa | GIF version | ||
| Description: Importation from double to triple conjunction. (Contributed by NM, 20-Aug-1995.) |
| Ref | Expression |
|---|---|
| 3impa.1 | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| 3impa | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3impa.1 | . . 3 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) | |
| 2 | 1 | exp31 364 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
| 3 | 2 | 3imp 1196 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 981 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 983 |
| This theorem is referenced by: ex3 1198 3impdir 1307 syl3an9b 1323 biimp3a 1358 stoic3 1451 rspec3 2598 rspc3v 2900 raltpg 3696 rextpg 3697 disjiun 4054 otexg 4292 opelopabt 4326 tpexg 4509 3optocl 4771 fun2ssres 5333 funssfv 5625 fvun1 5668 foco2 5845 f1elima 5865 eloprabga 6055 caovimo 6163 ot1stg 6261 ot2ndg 6262 ot3rdgg 6263 brtposg 6363 rdgexggg 6486 rdgivallem 6490 nnmass 6596 nndir 6599 nnaword 6620 th3q 6750 ecovass 6754 ecoviass 6755 fpmg 6784 findcard 7011 unfiin 7049 pr1or2 7328 addasspig 7478 mulasspig 7480 mulcanpig 7483 ltapig 7486 ltmpig 7487 addassnqg 7530 ltbtwnnqq 7563 mulnnnq0 7598 addassnq0 7610 genpassl 7672 genpassu 7673 genpassg 7674 aptiprleml 7787 adddir 8098 le2tri3i 8216 addsub12 8320 subdir 8493 reapmul1 8703 recexaplem2 8760 div12ap 8802 divdiv32ap 8828 divdivap1 8831 lble 9055 zaddcllemneg 9446 fnn0ind 9524 xrltso 9953 iccgelb 10089 elicc4 10097 elfz 10171 fzrevral 10262 expnegap0 10729 expgt0 10754 expge0 10757 expge1 10758 mulexpzap 10761 expp1zap 10770 expm1ap 10771 apexp1 10900 ccatsymb 11096 abssubap0 11516 binom 11910 dvds0lem 12227 dvdsnegb 12234 muldvds1 12242 muldvds2 12243 divalgmodcl 12354 gcd2n0cl 12405 lcmdvds 12516 prmdvdsexp 12585 rpexp1i 12591 eqglact 13676 lss0cl 14246 cnpval 14785 cnf2 14792 cnnei 14819 blssec 15025 blpnfctr 15026 mopni2 15070 mopni3 15071 dvply1 15352 uhgrm 15789 upgrm 15811 upgr1or2 15812 |
| Copyright terms: Public domain | W3C validator |