| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3impa | GIF version | ||
| Description: Importation from double to triple conjunction. (Contributed by NM, 20-Aug-1995.) |
| Ref | Expression |
|---|---|
| 3impa.1 | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| 3impa | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3impa.1 | . . 3 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) | |
| 2 | 1 | exp31 364 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
| 3 | 2 | 3imp 1217 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 1002 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 |
| This theorem is referenced by: ex3 1219 3impdir 1328 syl3an9b 1344 biimp3a 1379 stoic3 1473 rspec3 2620 rspc3v 2923 raltpg 3719 rextpg 3720 disjiun 4077 otexg 4315 opelopabt 4349 tpexg 4534 3optocl 4796 fun2ssres 5360 funssfv 5652 fvun1 5699 foco2 5876 f1elima 5896 eloprabga 6090 caovimo 6198 ot1stg 6296 ot2ndg 6297 ot3rdgg 6298 brtposg 6398 rdgexggg 6521 rdgivallem 6525 nnmass 6631 nndir 6634 nnaword 6655 th3q 6785 ecovass 6789 ecoviass 6790 fpmg 6819 findcard 7046 unfiin 7084 pr1or2 7363 addasspig 7513 mulasspig 7515 mulcanpig 7518 ltapig 7521 ltmpig 7522 addassnqg 7565 ltbtwnnqq 7598 mulnnnq0 7633 addassnq0 7645 genpassl 7707 genpassu 7708 genpassg 7709 aptiprleml 7822 adddir 8133 le2tri3i 8251 addsub12 8355 subdir 8528 reapmul1 8738 recexaplem2 8795 div12ap 8837 divdiv32ap 8863 divdivap1 8866 lble 9090 zaddcllemneg 9481 fnn0ind 9559 xrltso 9988 iccgelb 10124 elicc4 10132 elfz 10206 fzrevral 10297 expnegap0 10764 expgt0 10789 expge0 10792 expge1 10793 mulexpzap 10796 expp1zap 10805 expm1ap 10806 apexp1 10935 ccatsymb 11132 abssubap0 11596 binom 11990 dvds0lem 12307 dvdsnegb 12314 muldvds1 12322 muldvds2 12323 divalgmodcl 12434 gcd2n0cl 12485 lcmdvds 12596 prmdvdsexp 12665 rpexp1i 12671 eqglact 13757 lss0cl 14327 cnpval 14866 cnf2 14873 cnnei 14900 blssec 15106 blpnfctr 15107 mopni2 15151 mopni3 15152 dvply1 15433 uhgrm 15872 upgrm 15894 upgr1or2 15895 |
| Copyright terms: Public domain | W3C validator |