| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3impa | GIF version | ||
| Description: Importation from double to triple conjunction. (Contributed by NM, 20-Aug-1995.) |
| Ref | Expression |
|---|---|
| 3impa.1 | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| 3impa | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3impa.1 | . . 3 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) | |
| 2 | 1 | exp31 364 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
| 3 | 2 | 3imp 1196 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 981 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 983 |
| This theorem is referenced by: ex3 1198 3impdir 1307 syl3an9b 1323 biimp3a 1358 stoic3 1451 rspec3 2596 rspc3v 2893 raltpg 3686 rextpg 3687 disjiun 4039 otexg 4274 opelopabt 4308 tpexg 4491 3optocl 4753 fun2ssres 5314 funssfv 5602 fvun1 5645 foco2 5822 f1elima 5842 eloprabga 6032 caovimo 6140 ot1stg 6238 ot2ndg 6239 ot3rdgg 6240 brtposg 6340 rdgexggg 6463 rdgivallem 6467 nnmass 6573 nndir 6576 nnaword 6597 th3q 6727 ecovass 6731 ecoviass 6732 fpmg 6761 findcard 6985 unfiin 7023 addasspig 7443 mulasspig 7445 mulcanpig 7448 ltapig 7451 ltmpig 7452 addassnqg 7495 ltbtwnnqq 7528 mulnnnq0 7563 addassnq0 7575 genpassl 7637 genpassu 7638 genpassg 7639 aptiprleml 7752 adddir 8063 le2tri3i 8181 addsub12 8285 subdir 8458 reapmul1 8668 recexaplem2 8725 div12ap 8767 divdiv32ap 8793 divdivap1 8796 lble 9020 zaddcllemneg 9411 fnn0ind 9489 xrltso 9918 iccgelb 10054 elicc4 10062 elfz 10136 fzrevral 10227 expnegap0 10692 expgt0 10717 expge0 10720 expge1 10721 mulexpzap 10724 expp1zap 10733 expm1ap 10734 apexp1 10863 ccatsymb 11058 abssubap0 11401 binom 11795 dvds0lem 12112 dvdsnegb 12119 muldvds1 12127 muldvds2 12128 divalgmodcl 12239 gcd2n0cl 12290 lcmdvds 12401 prmdvdsexp 12470 rpexp1i 12476 eqglact 13561 lss0cl 14131 cnpval 14670 cnf2 14677 cnnei 14704 blssec 14910 blpnfctr 14911 mopni2 14955 mopni3 14956 dvply1 15237 |
| Copyright terms: Public domain | W3C validator |