| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3impa | GIF version | ||
| Description: Importation from double to triple conjunction. (Contributed by NM, 20-Aug-1995.) |
| Ref | Expression |
|---|---|
| 3impa.1 | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| 3impa | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3impa.1 | . . 3 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) | |
| 2 | 1 | exp31 364 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
| 3 | 2 | 3imp 1195 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 980 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 982 |
| This theorem is referenced by: ex3 1197 3impdir 1305 syl3an9b 1321 biimp3a 1356 stoic3 1442 rspec3 2587 rspc3v 2884 raltpg 3676 rextpg 3677 disjiun 4029 otexg 4264 opelopabt 4297 tpexg 4480 3optocl 4742 fun2ssres 5302 funssfv 5587 fvun1 5630 foco2 5803 f1elima 5823 eloprabga 6013 caovimo 6121 ot1stg 6219 ot2ndg 6220 ot3rdgg 6221 brtposg 6321 rdgexggg 6444 rdgivallem 6448 nnmass 6554 nndir 6557 nnaword 6578 th3q 6708 ecovass 6712 ecoviass 6713 fpmg 6742 findcard 6958 unfiin 6996 addasspig 7416 mulasspig 7418 mulcanpig 7421 ltapig 7424 ltmpig 7425 addassnqg 7468 ltbtwnnqq 7501 mulnnnq0 7536 addassnq0 7548 genpassl 7610 genpassu 7611 genpassg 7612 aptiprleml 7725 adddir 8036 le2tri3i 8154 addsub12 8258 subdir 8431 reapmul1 8641 recexaplem2 8698 div12ap 8740 divdiv32ap 8766 divdivap1 8769 lble 8993 zaddcllemneg 9384 fnn0ind 9461 xrltso 9890 iccgelb 10026 elicc4 10034 elfz 10108 fzrevral 10199 expnegap0 10658 expgt0 10683 expge0 10686 expge1 10687 mulexpzap 10690 expp1zap 10699 expm1ap 10700 apexp1 10829 abssubap0 11274 binom 11668 dvds0lem 11985 dvdsnegb 11992 muldvds1 12000 muldvds2 12001 divalgmodcl 12112 gcd2n0cl 12163 lcmdvds 12274 prmdvdsexp 12343 rpexp1i 12349 eqglact 13433 lss0cl 14003 cnpval 14542 cnf2 14549 cnnei 14576 blssec 14782 blpnfctr 14783 mopni2 14827 mopni3 14828 dvply1 15109 |
| Copyright terms: Public domain | W3C validator |