| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3impa | GIF version | ||
| Description: Importation from double to triple conjunction. (Contributed by NM, 20-Aug-1995.) |
| Ref | Expression |
|---|---|
| 3impa.1 | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| 3impa | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3impa.1 | . . 3 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) | |
| 2 | 1 | exp31 364 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
| 3 | 2 | 3imp 1195 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 980 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 982 |
| This theorem is referenced by: ex3 1197 3impdir 1306 syl3an9b 1322 biimp3a 1357 stoic3 1450 rspec3 2595 rspc3v 2892 raltpg 3685 rextpg 3686 disjiun 4038 otexg 4273 opelopabt 4307 tpexg 4490 3optocl 4752 fun2ssres 5313 funssfv 5601 fvun1 5644 foco2 5821 f1elima 5841 eloprabga 6031 caovimo 6139 ot1stg 6237 ot2ndg 6238 ot3rdgg 6239 brtposg 6339 rdgexggg 6462 rdgivallem 6466 nnmass 6572 nndir 6575 nnaword 6596 th3q 6726 ecovass 6730 ecoviass 6731 fpmg 6760 findcard 6984 unfiin 7022 addasspig 7442 mulasspig 7444 mulcanpig 7447 ltapig 7450 ltmpig 7451 addassnqg 7494 ltbtwnnqq 7527 mulnnnq0 7562 addassnq0 7574 genpassl 7636 genpassu 7637 genpassg 7638 aptiprleml 7751 adddir 8062 le2tri3i 8180 addsub12 8284 subdir 8457 reapmul1 8667 recexaplem2 8724 div12ap 8766 divdiv32ap 8792 divdivap1 8795 lble 9019 zaddcllemneg 9410 fnn0ind 9488 xrltso 9917 iccgelb 10053 elicc4 10061 elfz 10135 fzrevral 10226 expnegap0 10690 expgt0 10715 expge0 10718 expge1 10719 mulexpzap 10722 expp1zap 10731 expm1ap 10732 apexp1 10861 ccatsymb 11056 abssubap0 11372 binom 11766 dvds0lem 12083 dvdsnegb 12090 muldvds1 12098 muldvds2 12099 divalgmodcl 12210 gcd2n0cl 12261 lcmdvds 12372 prmdvdsexp 12441 rpexp1i 12447 eqglact 13532 lss0cl 14102 cnpval 14641 cnf2 14648 cnnei 14675 blssec 14881 blpnfctr 14882 mopni2 14926 mopni3 14927 dvply1 15208 |
| Copyright terms: Public domain | W3C validator |