Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 3impa | GIF version |
Description: Importation from double to triple conjunction. (Contributed by NM, 20-Aug-1995.) |
Ref | Expression |
---|---|
3impa.1 | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
3impa | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3impa.1 | . . 3 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) | |
2 | 1 | exp31 362 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
3 | 2 | 3imp 1176 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∧ w3a 963 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 df-3an 965 |
This theorem is referenced by: 3impdir 1273 syl3an9b 1289 biimp3a 1324 stoic3 1408 rspec3 2544 rspc3v 2829 raltpg 3608 rextpg 3609 disjiun 3956 otexg 4185 opelopabt 4217 tpexg 4398 3optocl 4657 fun2ssres 5206 funssfv 5487 fvun1 5527 foco2 5695 f1elima 5714 eloprabga 5898 caovimo 6004 ot1stg 6090 ot2ndg 6091 ot3rdgg 6092 brtposg 6191 rdgexggg 6314 rdgivallem 6318 nnmass 6423 nndir 6426 nnaword 6447 th3q 6574 ecovass 6578 ecoviass 6579 fpmg 6608 findcard 6822 unfiin 6859 addasspig 7229 mulasspig 7231 mulcanpig 7234 ltapig 7237 ltmpig 7238 addassnqg 7281 ltbtwnnqq 7314 mulnnnq0 7349 addassnq0 7361 genpassl 7423 genpassu 7424 genpassg 7425 aptiprleml 7538 adddir 7848 le2tri3i 7964 addsub12 8067 subdir 8240 reapmul1 8449 recexaplem2 8505 div12ap 8546 divdiv32ap 8572 divdivap1 8575 lble 8797 zaddcllemneg 9185 fnn0ind 9259 xrltso 9681 iccgelb 9814 elicc4 9822 elfz 9896 fzrevral 9985 expnegap0 10405 expgt0 10430 expge0 10433 expge1 10434 mulexpzap 10437 expp1zap 10446 expm1ap 10447 apexp1 10569 abssubap0 10967 binom 11358 dvds0lem 11670 dvdsnegb 11677 muldvds1 11685 muldvds2 11686 divalgmodcl 11792 gcd2n0cl 11825 lcmdvds 11928 prmdvdsexp 11994 rpexp1i 12000 cnpval 12545 cnf2 12552 cnnei 12579 blssec 12785 blpnfctr 12786 mopni2 12830 mopni3 12831 |
Copyright terms: Public domain | W3C validator |