Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > simpl1r | GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
Ref | Expression |
---|---|
simpl1r | ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒 ∧ 𝜃) ∧ 𝜏) → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1r 1012 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒 ∧ 𝜃) → 𝜓) | |
2 | 1 | adantr 274 | 1 ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒 ∧ 𝜃) ∧ 𝜏) → 𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∧ w3a 968 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 df-3an 970 |
This theorem is referenced by: tfisi 4564 prarloc 7444 |
Copyright terms: Public domain | W3C validator |