ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prarloc GIF version

Theorem prarloc 7493
Description: A Dedekind cut is arithmetically located. Part of Proposition 11.15 of [BauerTaylor], p. 52, slightly modified. It states that given a tolerance 𝑃, there are elements of the lower and upper cut which are within that tolerance of each other.

Usually, proofs will be shorter if they use prarloc2 7494 instead. (Contributed by Jim Kingdon, 22-Oct-2019.)

Assertion
Ref Expression
prarloc ((⟨𝐿, 𝑈⟩ ∈ P𝑃Q) → ∃𝑎𝐿𝑏𝑈 𝑏 <Q (𝑎 +Q 𝑃))
Distinct variable groups:   𝐿,𝑎,𝑏   𝑃,𝑎,𝑏   𝑈,𝑎,𝑏

Proof of Theorem prarloc
Dummy variables 𝑚 𝑛 𝑞 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prml 7467 . . . . . . 7 (⟨𝐿, 𝑈⟩ ∈ P → ∃𝑥Q 𝑥𝐿)
2 df-rex 2461 . . . . . . 7 (∃𝑥Q 𝑥𝐿 ↔ ∃𝑥(𝑥Q𝑥𝐿))
31, 2sylib 122 . . . . . 6 (⟨𝐿, 𝑈⟩ ∈ P → ∃𝑥(𝑥Q𝑥𝐿))
43adantr 276 . . . . 5 ((⟨𝐿, 𝑈⟩ ∈ P𝑃Q) → ∃𝑥(𝑥Q𝑥𝐿))
5 prmu 7468 . . . . . . 7 (⟨𝐿, 𝑈⟩ ∈ P → ∃𝑦Q 𝑦𝑈)
6 df-rex 2461 . . . . . . 7 (∃𝑦Q 𝑦𝑈 ↔ ∃𝑦(𝑦Q𝑦𝑈))
75, 6sylib 122 . . . . . 6 (⟨𝐿, 𝑈⟩ ∈ P → ∃𝑦(𝑦Q𝑦𝑈))
87adantr 276 . . . . 5 ((⟨𝐿, 𝑈⟩ ∈ P𝑃Q) → ∃𝑦(𝑦Q𝑦𝑈))
9 subhalfnqq 7404 . . . . . . . . 9 (𝑃Q → ∃𝑞Q (𝑞 +Q 𝑞) <Q 𝑃)
109adantl 277 . . . . . . . 8 ((⟨𝐿, 𝑈⟩ ∈ P𝑃Q) → ∃𝑞Q (𝑞 +Q 𝑞) <Q 𝑃)
11 df-rex 2461 . . . . . . . 8 (∃𝑞Q (𝑞 +Q 𝑞) <Q 𝑃 ↔ ∃𝑞(𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃))
1210, 11sylib 122 . . . . . . 7 ((⟨𝐿, 𝑈⟩ ∈ P𝑃Q) → ∃𝑞(𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃))
1312ancli 323 . . . . . 6 ((⟨𝐿, 𝑈⟩ ∈ P𝑃Q) → ((⟨𝐿, 𝑈⟩ ∈ P𝑃Q) ∧ ∃𝑞(𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃)))
14 19.42v 1906 . . . . . 6 (∃𝑞((⟨𝐿, 𝑈⟩ ∈ P𝑃Q) ∧ (𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃)) ↔ ((⟨𝐿, 𝑈⟩ ∈ P𝑃Q) ∧ ∃𝑞(𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃)))
1513, 14sylibr 134 . . . . 5 ((⟨𝐿, 𝑈⟩ ∈ P𝑃Q) → ∃𝑞((⟨𝐿, 𝑈⟩ ∈ P𝑃Q) ∧ (𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃)))
16 eeeanv 1933 . . . . 5 (∃𝑥𝑦𝑞((𝑥Q𝑥𝐿) ∧ (𝑦Q𝑦𝑈) ∧ ((⟨𝐿, 𝑈⟩ ∈ P𝑃Q) ∧ (𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃))) ↔ (∃𝑥(𝑥Q𝑥𝐿) ∧ ∃𝑦(𝑦Q𝑦𝑈) ∧ ∃𝑞((⟨𝐿, 𝑈⟩ ∈ P𝑃Q) ∧ (𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃))))
174, 8, 15, 16syl3anbrc 1181 . . . 4 ((⟨𝐿, 𝑈⟩ ∈ P𝑃Q) → ∃𝑥𝑦𝑞((𝑥Q𝑥𝐿) ∧ (𝑦Q𝑦𝑈) ∧ ((⟨𝐿, 𝑈⟩ ∈ P𝑃Q) ∧ (𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃))))
18 prarloclemarch2 7409 . . . . . . . . . . . . . 14 ((𝑦Q𝑥Q𝑞Q) → ∃𝑛N (1o <N 𝑛𝑦 <Q (𝑥 +Q ([⟨𝑛, 1o⟩] ~Q ·Q 𝑞))))
19 df-rex 2461 . . . . . . . . . . . . . 14 (∃𝑛N (1o <N 𝑛𝑦 <Q (𝑥 +Q ([⟨𝑛, 1o⟩] ~Q ·Q 𝑞))) ↔ ∃𝑛(𝑛N ∧ (1o <N 𝑛𝑦 <Q (𝑥 +Q ([⟨𝑛, 1o⟩] ~Q ·Q 𝑞)))))
2018, 19sylib 122 . . . . . . . . . . . . 13 ((𝑦Q𝑥Q𝑞Q) → ∃𝑛(𝑛N ∧ (1o <N 𝑛𝑦 <Q (𝑥 +Q ([⟨𝑛, 1o⟩] ~Q ·Q 𝑞)))))
21203com12 1207 . . . . . . . . . . . 12 ((𝑥Q𝑦Q𝑞Q) → ∃𝑛(𝑛N ∧ (1o <N 𝑛𝑦 <Q (𝑥 +Q ([⟨𝑛, 1o⟩] ~Q ·Q 𝑞)))))
22213adant1r 1231 . . . . . . . . . . 11 (((𝑥Q𝑥𝐿) ∧ 𝑦Q𝑞Q) → ∃𝑛(𝑛N ∧ (1o <N 𝑛𝑦 <Q (𝑥 +Q ([⟨𝑛, 1o⟩] ~Q ·Q 𝑞)))))
23223adant2r 1233 . . . . . . . . . 10 (((𝑥Q𝑥𝐿) ∧ (𝑦Q𝑦𝑈) ∧ 𝑞Q) → ∃𝑛(𝑛N ∧ (1o <N 𝑛𝑦 <Q (𝑥 +Q ([⟨𝑛, 1o⟩] ~Q ·Q 𝑞)))))
24233adant3r 1235 . . . . . . . . 9 (((𝑥Q𝑥𝐿) ∧ (𝑦Q𝑦𝑈) ∧ (𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃)) → ∃𝑛(𝑛N ∧ (1o <N 𝑛𝑦 <Q (𝑥 +Q ([⟨𝑛, 1o⟩] ~Q ·Q 𝑞)))))
25243adant3l 1234 . . . . . . . 8 (((𝑥Q𝑥𝐿) ∧ (𝑦Q𝑦𝑈) ∧ ((⟨𝐿, 𝑈⟩ ∈ P𝑃Q) ∧ (𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃))) → ∃𝑛(𝑛N ∧ (1o <N 𝑛𝑦 <Q (𝑥 +Q ([⟨𝑛, 1o⟩] ~Q ·Q 𝑞)))))
2625ancli 323 . . . . . . 7 (((𝑥Q𝑥𝐿) ∧ (𝑦Q𝑦𝑈) ∧ ((⟨𝐿, 𝑈⟩ ∈ P𝑃Q) ∧ (𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃))) → (((𝑥Q𝑥𝐿) ∧ (𝑦Q𝑦𝑈) ∧ ((⟨𝐿, 𝑈⟩ ∈ P𝑃Q) ∧ (𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃))) ∧ ∃𝑛(𝑛N ∧ (1o <N 𝑛𝑦 <Q (𝑥 +Q ([⟨𝑛, 1o⟩] ~Q ·Q 𝑞))))))
27 19.42v 1906 . . . . . . 7 (∃𝑛(((𝑥Q𝑥𝐿) ∧ (𝑦Q𝑦𝑈) ∧ ((⟨𝐿, 𝑈⟩ ∈ P𝑃Q) ∧ (𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃))) ∧ (𝑛N ∧ (1o <N 𝑛𝑦 <Q (𝑥 +Q ([⟨𝑛, 1o⟩] ~Q ·Q 𝑞))))) ↔ (((𝑥Q𝑥𝐿) ∧ (𝑦Q𝑦𝑈) ∧ ((⟨𝐿, 𝑈⟩ ∈ P𝑃Q) ∧ (𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃))) ∧ ∃𝑛(𝑛N ∧ (1o <N 𝑛𝑦 <Q (𝑥 +Q ([⟨𝑛, 1o⟩] ~Q ·Q 𝑞))))))
2826, 27sylibr 134 . . . . . 6 (((𝑥Q𝑥𝐿) ∧ (𝑦Q𝑦𝑈) ∧ ((⟨𝐿, 𝑈⟩ ∈ P𝑃Q) ∧ (𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃))) → ∃𝑛(((𝑥Q𝑥𝐿) ∧ (𝑦Q𝑦𝑈) ∧ ((⟨𝐿, 𝑈⟩ ∈ P𝑃Q) ∧ (𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃))) ∧ (𝑛N ∧ (1o <N 𝑛𝑦 <Q (𝑥 +Q ([⟨𝑛, 1o⟩] ~Q ·Q 𝑞))))))
29282eximi 1601 . . . . 5 (∃𝑦𝑞((𝑥Q𝑥𝐿) ∧ (𝑦Q𝑦𝑈) ∧ ((⟨𝐿, 𝑈⟩ ∈ P𝑃Q) ∧ (𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃))) → ∃𝑦𝑞𝑛(((𝑥Q𝑥𝐿) ∧ (𝑦Q𝑦𝑈) ∧ ((⟨𝐿, 𝑈⟩ ∈ P𝑃Q) ∧ (𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃))) ∧ (𝑛N ∧ (1o <N 𝑛𝑦 <Q (𝑥 +Q ([⟨𝑛, 1o⟩] ~Q ·Q 𝑞))))))
3029eximi 1600 . . . 4 (∃𝑥𝑦𝑞((𝑥Q𝑥𝐿) ∧ (𝑦Q𝑦𝑈) ∧ ((⟨𝐿, 𝑈⟩ ∈ P𝑃Q) ∧ (𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃))) → ∃𝑥𝑦𝑞𝑛(((𝑥Q𝑥𝐿) ∧ (𝑦Q𝑦𝑈) ∧ ((⟨𝐿, 𝑈⟩ ∈ P𝑃Q) ∧ (𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃))) ∧ (𝑛N ∧ (1o <N 𝑛𝑦 <Q (𝑥 +Q ([⟨𝑛, 1o⟩] ~Q ·Q 𝑞))))))
31 simpl1l 1048 . . . . . . . . . 10 ((((𝑥Q𝑥𝐿) ∧ (𝑦Q𝑦𝑈) ∧ ((⟨𝐿, 𝑈⟩ ∈ P𝑃Q) ∧ (𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃))) ∧ (𝑛N ∧ (1o <N 𝑛𝑦 <Q (𝑥 +Q ([⟨𝑛, 1o⟩] ~Q ·Q 𝑞))))) → 𝑥Q)
32 simp3rl 1070 . . . . . . . . . . 11 (((𝑥Q𝑥𝐿) ∧ (𝑦Q𝑦𝑈) ∧ ((⟨𝐿, 𝑈⟩ ∈ P𝑃Q) ∧ (𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃))) → 𝑞Q)
3332adantr 276 . . . . . . . . . 10 ((((𝑥Q𝑥𝐿) ∧ (𝑦Q𝑦𝑈) ∧ ((⟨𝐿, 𝑈⟩ ∈ P𝑃Q) ∧ (𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃))) ∧ (𝑛N ∧ (1o <N 𝑛𝑦 <Q (𝑥 +Q ([⟨𝑛, 1o⟩] ~Q ·Q 𝑞))))) → 𝑞Q)
34 simp3rr 1071 . . . . . . . . . . 11 (((𝑥Q𝑥𝐿) ∧ (𝑦Q𝑦𝑈) ∧ ((⟨𝐿, 𝑈⟩ ∈ P𝑃Q) ∧ (𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃))) → (𝑞 +Q 𝑞) <Q 𝑃)
3534adantr 276 . . . . . . . . . 10 ((((𝑥Q𝑥𝐿) ∧ (𝑦Q𝑦𝑈) ∧ ((⟨𝐿, 𝑈⟩ ∈ P𝑃Q) ∧ (𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃))) ∧ (𝑛N ∧ (1o <N 𝑛𝑦 <Q (𝑥 +Q ([⟨𝑛, 1o⟩] ~Q ·Q 𝑞))))) → (𝑞 +Q 𝑞) <Q 𝑃)
3631, 33, 353jca 1177 . . . . . . . . 9 ((((𝑥Q𝑥𝐿) ∧ (𝑦Q𝑦𝑈) ∧ ((⟨𝐿, 𝑈⟩ ∈ P𝑃Q) ∧ (𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃))) ∧ (𝑛N ∧ (1o <N 𝑛𝑦 <Q (𝑥 +Q ([⟨𝑛, 1o⟩] ~Q ·Q 𝑞))))) → (𝑥Q𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃))
37 simp3ll 1068 . . . . . . . . . . . 12 (((𝑥Q𝑥𝐿) ∧ (𝑦Q𝑦𝑈) ∧ ((⟨𝐿, 𝑈⟩ ∈ P𝑃Q) ∧ (𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃))) → ⟨𝐿, 𝑈⟩ ∈ P)
3837adantr 276 . . . . . . . . . . 11 ((((𝑥Q𝑥𝐿) ∧ (𝑦Q𝑦𝑈) ∧ ((⟨𝐿, 𝑈⟩ ∈ P𝑃Q) ∧ (𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃))) ∧ (𝑛N ∧ (1o <N 𝑛𝑦 <Q (𝑥 +Q ([⟨𝑛, 1o⟩] ~Q ·Q 𝑞))))) → ⟨𝐿, 𝑈⟩ ∈ P)
39 simpl1r 1049 . . . . . . . . . . 11 ((((𝑥Q𝑥𝐿) ∧ (𝑦Q𝑦𝑈) ∧ ((⟨𝐿, 𝑈⟩ ∈ P𝑃Q) ∧ (𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃))) ∧ (𝑛N ∧ (1o <N 𝑛𝑦 <Q (𝑥 +Q ([⟨𝑛, 1o⟩] ~Q ·Q 𝑞))))) → 𝑥𝐿)
40 simprl 529 . . . . . . . . . . 11 ((((𝑥Q𝑥𝐿) ∧ (𝑦Q𝑦𝑈) ∧ ((⟨𝐿, 𝑈⟩ ∈ P𝑃Q) ∧ (𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃))) ∧ (𝑛N ∧ (1o <N 𝑛𝑦 <Q (𝑥 +Q ([⟨𝑛, 1o⟩] ~Q ·Q 𝑞))))) → 𝑛N)
41 simprrl 539 . . . . . . . . . . 11 ((((𝑥Q𝑥𝐿) ∧ (𝑦Q𝑦𝑈) ∧ ((⟨𝐿, 𝑈⟩ ∈ P𝑃Q) ∧ (𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃))) ∧ (𝑛N ∧ (1o <N 𝑛𝑦 <Q (𝑥 +Q ([⟨𝑛, 1o⟩] ~Q ·Q 𝑞))))) → 1o <N 𝑛)
42 simprrr 540 . . . . . . . . . . . 12 ((((𝑥Q𝑥𝐿) ∧ (𝑦Q𝑦𝑈) ∧ ((⟨𝐿, 𝑈⟩ ∈ P𝑃Q) ∧ (𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃))) ∧ (𝑛N ∧ (1o <N 𝑛𝑦 <Q (𝑥 +Q ([⟨𝑛, 1o⟩] ~Q ·Q 𝑞))))) → 𝑦 <Q (𝑥 +Q ([⟨𝑛, 1o⟩] ~Q ·Q 𝑞)))
43 simpl2r 1051 . . . . . . . . . . . . 13 ((((𝑥Q𝑥𝐿) ∧ (𝑦Q𝑦𝑈) ∧ ((⟨𝐿, 𝑈⟩ ∈ P𝑃Q) ∧ (𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃))) ∧ (𝑛N ∧ (1o <N 𝑛𝑦 <Q (𝑥 +Q ([⟨𝑛, 1o⟩] ~Q ·Q 𝑞))))) → 𝑦𝑈)
44 prcunqu 7475 . . . . . . . . . . . . 13 ((⟨𝐿, 𝑈⟩ ∈ P𝑦𝑈) → (𝑦 <Q (𝑥 +Q ([⟨𝑛, 1o⟩] ~Q ·Q 𝑞)) → (𝑥 +Q ([⟨𝑛, 1o⟩] ~Q ·Q 𝑞)) ∈ 𝑈))
4538, 43, 44syl2anc 411 . . . . . . . . . . . 12 ((((𝑥Q𝑥𝐿) ∧ (𝑦Q𝑦𝑈) ∧ ((⟨𝐿, 𝑈⟩ ∈ P𝑃Q) ∧ (𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃))) ∧ (𝑛N ∧ (1o <N 𝑛𝑦 <Q (𝑥 +Q ([⟨𝑛, 1o⟩] ~Q ·Q 𝑞))))) → (𝑦 <Q (𝑥 +Q ([⟨𝑛, 1o⟩] ~Q ·Q 𝑞)) → (𝑥 +Q ([⟨𝑛, 1o⟩] ~Q ·Q 𝑞)) ∈ 𝑈))
4642, 45mpd 13 . . . . . . . . . . 11 ((((𝑥Q𝑥𝐿) ∧ (𝑦Q𝑦𝑈) ∧ ((⟨𝐿, 𝑈⟩ ∈ P𝑃Q) ∧ (𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃))) ∧ (𝑛N ∧ (1o <N 𝑛𝑦 <Q (𝑥 +Q ([⟨𝑛, 1o⟩] ~Q ·Q 𝑞))))) → (𝑥 +Q ([⟨𝑛, 1o⟩] ~Q ·Q 𝑞)) ∈ 𝑈)
47 prarloclem 7491 . . . . . . . . . . 11 (((⟨𝐿, 𝑈⟩ ∈ P𝑥𝐿) ∧ (𝑛N𝑞Q ∧ 1o <N 𝑛) ∧ (𝑥 +Q ([⟨𝑛, 1o⟩] ~Q ·Q 𝑞)) ∈ 𝑈) → ∃𝑚 ∈ ω ((𝑥 +Q0 ([⟨𝑚, 1o⟩] ~Q0 ·Q0 𝑞)) ∈ 𝐿 ∧ (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞)) ∈ 𝑈))
4838, 39, 40, 33, 41, 46, 47syl231anc 1258 . . . . . . . . . 10 ((((𝑥Q𝑥𝐿) ∧ (𝑦Q𝑦𝑈) ∧ ((⟨𝐿, 𝑈⟩ ∈ P𝑃Q) ∧ (𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃))) ∧ (𝑛N ∧ (1o <N 𝑛𝑦 <Q (𝑥 +Q ([⟨𝑛, 1o⟩] ~Q ·Q 𝑞))))) → ∃𝑚 ∈ ω ((𝑥 +Q0 ([⟨𝑚, 1o⟩] ~Q0 ·Q0 𝑞)) ∈ 𝐿 ∧ (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞)) ∈ 𝑈))
49 df-rex 2461 . . . . . . . . . 10 (∃𝑚 ∈ ω ((𝑥 +Q0 ([⟨𝑚, 1o⟩] ~Q0 ·Q0 𝑞)) ∈ 𝐿 ∧ (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞)) ∈ 𝑈) ↔ ∃𝑚(𝑚 ∈ ω ∧ ((𝑥 +Q0 ([⟨𝑚, 1o⟩] ~Q0 ·Q0 𝑞)) ∈ 𝐿 ∧ (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞)) ∈ 𝑈)))
5048, 49sylib 122 . . . . . . . . 9 ((((𝑥Q𝑥𝐿) ∧ (𝑦Q𝑦𝑈) ∧ ((⟨𝐿, 𝑈⟩ ∈ P𝑃Q) ∧ (𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃))) ∧ (𝑛N ∧ (1o <N 𝑛𝑦 <Q (𝑥 +Q ([⟨𝑛, 1o⟩] ~Q ·Q 𝑞))))) → ∃𝑚(𝑚 ∈ ω ∧ ((𝑥 +Q0 ([⟨𝑚, 1o⟩] ~Q0 ·Q0 𝑞)) ∈ 𝐿 ∧ (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞)) ∈ 𝑈)))
5136, 50jca 306 . . . . . . . 8 ((((𝑥Q𝑥𝐿) ∧ (𝑦Q𝑦𝑈) ∧ ((⟨𝐿, 𝑈⟩ ∈ P𝑃Q) ∧ (𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃))) ∧ (𝑛N ∧ (1o <N 𝑛𝑦 <Q (𝑥 +Q ([⟨𝑛, 1o⟩] ~Q ·Q 𝑞))))) → ((𝑥Q𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃) ∧ ∃𝑚(𝑚 ∈ ω ∧ ((𝑥 +Q0 ([⟨𝑚, 1o⟩] ~Q0 ·Q0 𝑞)) ∈ 𝐿 ∧ (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞)) ∈ 𝑈))))
52 19.42v 1906 . . . . . . . 8 (∃𝑚((𝑥Q𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃) ∧ (𝑚 ∈ ω ∧ ((𝑥 +Q0 ([⟨𝑚, 1o⟩] ~Q0 ·Q0 𝑞)) ∈ 𝐿 ∧ (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞)) ∈ 𝑈))) ↔ ((𝑥Q𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃) ∧ ∃𝑚(𝑚 ∈ ω ∧ ((𝑥 +Q0 ([⟨𝑚, 1o⟩] ~Q0 ·Q0 𝑞)) ∈ 𝐿 ∧ (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞)) ∈ 𝑈))))
5351, 52sylibr 134 . . . . . . 7 ((((𝑥Q𝑥𝐿) ∧ (𝑦Q𝑦𝑈) ∧ ((⟨𝐿, 𝑈⟩ ∈ P𝑃Q) ∧ (𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃))) ∧ (𝑛N ∧ (1o <N 𝑛𝑦 <Q (𝑥 +Q ([⟨𝑛, 1o⟩] ~Q ·Q 𝑞))))) → ∃𝑚((𝑥Q𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃) ∧ (𝑚 ∈ ω ∧ ((𝑥 +Q0 ([⟨𝑚, 1o⟩] ~Q0 ·Q0 𝑞)) ∈ 𝐿 ∧ (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞)) ∈ 𝑈))))
54 simprrl 539 . . . . . . . . . . . 12 (((𝑥Q𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃) ∧ (𝑚 ∈ ω ∧ ((𝑥 +Q0 ([⟨𝑚, 1o⟩] ~Q0 ·Q0 𝑞)) ∈ 𝐿 ∧ (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞)) ∈ 𝑈))) → (𝑥 +Q0 ([⟨𝑚, 1o⟩] ~Q0 ·Q0 𝑞)) ∈ 𝐿)
55 eleq1 2240 . . . . . . . . . . . . . . . . 17 (𝑎 = (𝑥 +Q0 ([⟨𝑚, 1o⟩] ~Q0 ·Q0 𝑞)) → (𝑎𝐿 ↔ (𝑥 +Q0 ([⟨𝑚, 1o⟩] ~Q0 ·Q0 𝑞)) ∈ 𝐿))
5655anbi1d 465 . . . . . . . . . . . . . . . 16 (𝑎 = (𝑥 +Q0 ([⟨𝑚, 1o⟩] ~Q0 ·Q0 𝑞)) → ((𝑎𝐿 ∧ (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞)) ∈ 𝑈) ↔ ((𝑥 +Q0 ([⟨𝑚, 1o⟩] ~Q0 ·Q0 𝑞)) ∈ 𝐿 ∧ (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞)) ∈ 𝑈)))
5756anbi2d 464 . . . . . . . . . . . . . . 15 (𝑎 = (𝑥 +Q0 ([⟨𝑚, 1o⟩] ~Q0 ·Q0 𝑞)) → ((𝑚 ∈ ω ∧ (𝑎𝐿 ∧ (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞)) ∈ 𝑈)) ↔ (𝑚 ∈ ω ∧ ((𝑥 +Q0 ([⟨𝑚, 1o⟩] ~Q0 ·Q0 𝑞)) ∈ 𝐿 ∧ (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞)) ∈ 𝑈))))
5857anbi2d 464 . . . . . . . . . . . . . 14 (𝑎 = (𝑥 +Q0 ([⟨𝑚, 1o⟩] ~Q0 ·Q0 𝑞)) → (((𝑥Q𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃) ∧ (𝑚 ∈ ω ∧ (𝑎𝐿 ∧ (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞)) ∈ 𝑈))) ↔ ((𝑥Q𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃) ∧ (𝑚 ∈ ω ∧ ((𝑥 +Q0 ([⟨𝑚, 1o⟩] ~Q0 ·Q0 𝑞)) ∈ 𝐿 ∧ (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞)) ∈ 𝑈)))))
5958ceqsexgv 2866 . . . . . . . . . . . . 13 ((𝑥 +Q0 ([⟨𝑚, 1o⟩] ~Q0 ·Q0 𝑞)) ∈ 𝐿 → (∃𝑎(𝑎 = (𝑥 +Q0 ([⟨𝑚, 1o⟩] ~Q0 ·Q0 𝑞)) ∧ ((𝑥Q𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃) ∧ (𝑚 ∈ ω ∧ (𝑎𝐿 ∧ (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞)) ∈ 𝑈)))) ↔ ((𝑥Q𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃) ∧ (𝑚 ∈ ω ∧ ((𝑥 +Q0 ([⟨𝑚, 1o⟩] ~Q0 ·Q0 𝑞)) ∈ 𝐿 ∧ (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞)) ∈ 𝑈)))))
6059biimprcd 160 . . . . . . . . . . . 12 (((𝑥Q𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃) ∧ (𝑚 ∈ ω ∧ ((𝑥 +Q0 ([⟨𝑚, 1o⟩] ~Q0 ·Q0 𝑞)) ∈ 𝐿 ∧ (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞)) ∈ 𝑈))) → ((𝑥 +Q0 ([⟨𝑚, 1o⟩] ~Q0 ·Q0 𝑞)) ∈ 𝐿 → ∃𝑎(𝑎 = (𝑥 +Q0 ([⟨𝑚, 1o⟩] ~Q0 ·Q0 𝑞)) ∧ ((𝑥Q𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃) ∧ (𝑚 ∈ ω ∧ (𝑎𝐿 ∧ (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞)) ∈ 𝑈))))))
6154, 60mpd 13 . . . . . . . . . . 11 (((𝑥Q𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃) ∧ (𝑚 ∈ ω ∧ ((𝑥 +Q0 ([⟨𝑚, 1o⟩] ~Q0 ·Q0 𝑞)) ∈ 𝐿 ∧ (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞)) ∈ 𝑈))) → ∃𝑎(𝑎 = (𝑥 +Q0 ([⟨𝑚, 1o⟩] ~Q0 ·Q0 𝑞)) ∧ ((𝑥Q𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃) ∧ (𝑚 ∈ ω ∧ (𝑎𝐿 ∧ (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞)) ∈ 𝑈)))))
62 simprrr 540 . . . . . . . . . . 11 (((𝑥Q𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃) ∧ (𝑚 ∈ ω ∧ ((𝑥 +Q0 ([⟨𝑚, 1o⟩] ~Q0 ·Q0 𝑞)) ∈ 𝐿 ∧ (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞)) ∈ 𝑈))) → (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞)) ∈ 𝑈)
63 eleq1 2240 . . . . . . . . . . . . . . . . . 18 (𝑏 = (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞)) → (𝑏𝑈 ↔ (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞)) ∈ 𝑈))
6463anbi2d 464 . . . . . . . . . . . . . . . . 17 (𝑏 = (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞)) → ((𝑎𝐿𝑏𝑈) ↔ (𝑎𝐿 ∧ (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞)) ∈ 𝑈)))
6564anbi2d 464 . . . . . . . . . . . . . . . 16 (𝑏 = (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞)) → ((𝑚 ∈ ω ∧ (𝑎𝐿𝑏𝑈)) ↔ (𝑚 ∈ ω ∧ (𝑎𝐿 ∧ (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞)) ∈ 𝑈))))
6665anbi2d 464 . . . . . . . . . . . . . . 15 (𝑏 = (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞)) → (((𝑥Q𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃) ∧ (𝑚 ∈ ω ∧ (𝑎𝐿𝑏𝑈))) ↔ ((𝑥Q𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃) ∧ (𝑚 ∈ ω ∧ (𝑎𝐿 ∧ (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞)) ∈ 𝑈)))))
6766anbi2d 464 . . . . . . . . . . . . . 14 (𝑏 = (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞)) → ((𝑎 = (𝑥 +Q0 ([⟨𝑚, 1o⟩] ~Q0 ·Q0 𝑞)) ∧ ((𝑥Q𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃) ∧ (𝑚 ∈ ω ∧ (𝑎𝐿𝑏𝑈)))) ↔ (𝑎 = (𝑥 +Q0 ([⟨𝑚, 1o⟩] ~Q0 ·Q0 𝑞)) ∧ ((𝑥Q𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃) ∧ (𝑚 ∈ ω ∧ (𝑎𝐿 ∧ (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞)) ∈ 𝑈))))))
6867exbidv 1825 . . . . . . . . . . . . 13 (𝑏 = (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞)) → (∃𝑎(𝑎 = (𝑥 +Q0 ([⟨𝑚, 1o⟩] ~Q0 ·Q0 𝑞)) ∧ ((𝑥Q𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃) ∧ (𝑚 ∈ ω ∧ (𝑎𝐿𝑏𝑈)))) ↔ ∃𝑎(𝑎 = (𝑥 +Q0 ([⟨𝑚, 1o⟩] ~Q0 ·Q0 𝑞)) ∧ ((𝑥Q𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃) ∧ (𝑚 ∈ ω ∧ (𝑎𝐿 ∧ (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞)) ∈ 𝑈))))))
6968ceqsexgv 2866 . . . . . . . . . . . 12 ((𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞)) ∈ 𝑈 → (∃𝑏(𝑏 = (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞)) ∧ ∃𝑎(𝑎 = (𝑥 +Q0 ([⟨𝑚, 1o⟩] ~Q0 ·Q0 𝑞)) ∧ ((𝑥Q𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃) ∧ (𝑚 ∈ ω ∧ (𝑎𝐿𝑏𝑈))))) ↔ ∃𝑎(𝑎 = (𝑥 +Q0 ([⟨𝑚, 1o⟩] ~Q0 ·Q0 𝑞)) ∧ ((𝑥Q𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃) ∧ (𝑚 ∈ ω ∧ (𝑎𝐿 ∧ (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞)) ∈ 𝑈))))))
7069biimprcd 160 . . . . . . . . . . 11 (∃𝑎(𝑎 = (𝑥 +Q0 ([⟨𝑚, 1o⟩] ~Q0 ·Q0 𝑞)) ∧ ((𝑥Q𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃) ∧ (𝑚 ∈ ω ∧ (𝑎𝐿 ∧ (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞)) ∈ 𝑈)))) → ((𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞)) ∈ 𝑈 → ∃𝑏(𝑏 = (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞)) ∧ ∃𝑎(𝑎 = (𝑥 +Q0 ([⟨𝑚, 1o⟩] ~Q0 ·Q0 𝑞)) ∧ ((𝑥Q𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃) ∧ (𝑚 ∈ ω ∧ (𝑎𝐿𝑏𝑈)))))))
7161, 62, 70sylc 62 . . . . . . . . . 10 (((𝑥Q𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃) ∧ (𝑚 ∈ ω ∧ ((𝑥 +Q0 ([⟨𝑚, 1o⟩] ~Q0 ·Q0 𝑞)) ∈ 𝐿 ∧ (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞)) ∈ 𝑈))) → ∃𝑏(𝑏 = (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞)) ∧ ∃𝑎(𝑎 = (𝑥 +Q0 ([⟨𝑚, 1o⟩] ~Q0 ·Q0 𝑞)) ∧ ((𝑥Q𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃) ∧ (𝑚 ∈ ω ∧ (𝑎𝐿𝑏𝑈))))))
72 19.42v 1906 . . . . . . . . . . 11 (∃𝑎(𝑏 = (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞)) ∧ (𝑎 = (𝑥 +Q0 ([⟨𝑚, 1o⟩] ~Q0 ·Q0 𝑞)) ∧ ((𝑥Q𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃) ∧ (𝑚 ∈ ω ∧ (𝑎𝐿𝑏𝑈))))) ↔ (𝑏 = (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞)) ∧ ∃𝑎(𝑎 = (𝑥 +Q0 ([⟨𝑚, 1o⟩] ~Q0 ·Q0 𝑞)) ∧ ((𝑥Q𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃) ∧ (𝑚 ∈ ω ∧ (𝑎𝐿𝑏𝑈))))))
7372exbii 1605 . . . . . . . . . 10 (∃𝑏𝑎(𝑏 = (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞)) ∧ (𝑎 = (𝑥 +Q0 ([⟨𝑚, 1o⟩] ~Q0 ·Q0 𝑞)) ∧ ((𝑥Q𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃) ∧ (𝑚 ∈ ω ∧ (𝑎𝐿𝑏𝑈))))) ↔ ∃𝑏(𝑏 = (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞)) ∧ ∃𝑎(𝑎 = (𝑥 +Q0 ([⟨𝑚, 1o⟩] ~Q0 ·Q0 𝑞)) ∧ ((𝑥Q𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃) ∧ (𝑚 ∈ ω ∧ (𝑎𝐿𝑏𝑈))))))
7471, 73sylibr 134 . . . . . . . . 9 (((𝑥Q𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃) ∧ (𝑚 ∈ ω ∧ ((𝑥 +Q0 ([⟨𝑚, 1o⟩] ~Q0 ·Q0 𝑞)) ∈ 𝐿 ∧ (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞)) ∈ 𝑈))) → ∃𝑏𝑎(𝑏 = (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞)) ∧ (𝑎 = (𝑥 +Q0 ([⟨𝑚, 1o⟩] ~Q0 ·Q0 𝑞)) ∧ ((𝑥Q𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃) ∧ (𝑚 ∈ ω ∧ (𝑎𝐿𝑏𝑈))))))
75 simprrl 539 . . . . . . . . . . . . . 14 (((𝑥Q𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃) ∧ (𝑚 ∈ ω ∧ (𝑎𝐿𝑏𝑈))) → 𝑎𝐿)
7675adantl 277 . . . . . . . . . . . . 13 (((𝑎 = (𝑥 +Q0 ([⟨𝑚, 1o⟩] ~Q0 ·Q0 𝑞)) ∧ 𝑏 = (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞))) ∧ ((𝑥Q𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃) ∧ (𝑚 ∈ ω ∧ (𝑎𝐿𝑏𝑈)))) → 𝑎𝐿)
77 simprrr 540 . . . . . . . . . . . . . . 15 (((𝑥Q𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃) ∧ (𝑚 ∈ ω ∧ (𝑎𝐿𝑏𝑈))) → 𝑏𝑈)
7877adantl 277 . . . . . . . . . . . . . 14 (((𝑎 = (𝑥 +Q0 ([⟨𝑚, 1o⟩] ~Q0 ·Q0 𝑞)) ∧ 𝑏 = (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞))) ∧ ((𝑥Q𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃) ∧ (𝑚 ∈ ω ∧ (𝑎𝐿𝑏𝑈)))) → 𝑏𝑈)
79 simpl 109 . . . . . . . . . . . . . . 15 (((𝑎 = (𝑥 +Q0 ([⟨𝑚, 1o⟩] ~Q0 ·Q0 𝑞)) ∧ 𝑏 = (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞))) ∧ ((𝑥Q𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃) ∧ (𝑚 ∈ ω ∧ (𝑎𝐿𝑏𝑈)))) → (𝑎 = (𝑥 +Q0 ([⟨𝑚, 1o⟩] ~Q0 ·Q0 𝑞)) ∧ 𝑏 = (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞))))
80 simprl2 1043 . . . . . . . . . . . . . . . 16 (((𝑎 = (𝑥 +Q0 ([⟨𝑚, 1o⟩] ~Q0 ·Q0 𝑞)) ∧ 𝑏 = (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞))) ∧ ((𝑥Q𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃) ∧ (𝑚 ∈ ω ∧ (𝑎𝐿𝑏𝑈)))) → 𝑞Q)
81 simprl3 1044 . . . . . . . . . . . . . . . 16 (((𝑎 = (𝑥 +Q0 ([⟨𝑚, 1o⟩] ~Q0 ·Q0 𝑞)) ∧ 𝑏 = (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞))) ∧ ((𝑥Q𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃) ∧ (𝑚 ∈ ω ∧ (𝑎𝐿𝑏𝑈)))) → (𝑞 +Q 𝑞) <Q 𝑃)
8280, 81jca 306 . . . . . . . . . . . . . . 15 (((𝑎 = (𝑥 +Q0 ([⟨𝑚, 1o⟩] ~Q0 ·Q0 𝑞)) ∧ 𝑏 = (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞))) ∧ ((𝑥Q𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃) ∧ (𝑚 ∈ ω ∧ (𝑎𝐿𝑏𝑈)))) → (𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃))
83 simprl1 1042 . . . . . . . . . . . . . . . 16 (((𝑎 = (𝑥 +Q0 ([⟨𝑚, 1o⟩] ~Q0 ·Q0 𝑞)) ∧ 𝑏 = (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞))) ∧ ((𝑥Q𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃) ∧ (𝑚 ∈ ω ∧ (𝑎𝐿𝑏𝑈)))) → 𝑥Q)
84 simprrl 539 . . . . . . . . . . . . . . . 16 (((𝑎 = (𝑥 +Q0 ([⟨𝑚, 1o⟩] ~Q0 ·Q0 𝑞)) ∧ 𝑏 = (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞))) ∧ ((𝑥Q𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃) ∧ (𝑚 ∈ ω ∧ (𝑎𝐿𝑏𝑈)))) → 𝑚 ∈ ω)
8583, 84jca 306 . . . . . . . . . . . . . . 15 (((𝑎 = (𝑥 +Q0 ([⟨𝑚, 1o⟩] ~Q0 ·Q0 𝑞)) ∧ 𝑏 = (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞))) ∧ ((𝑥Q𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃) ∧ (𝑚 ∈ ω ∧ (𝑎𝐿𝑏𝑈)))) → (𝑥Q𝑚 ∈ ω))
86 prarloclemcalc 7492 . . . . . . . . . . . . . . 15 (((𝑎 = (𝑥 +Q0 ([⟨𝑚, 1o⟩] ~Q0 ·Q0 𝑞)) ∧ 𝑏 = (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞))) ∧ ((𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃) ∧ (𝑥Q𝑚 ∈ ω))) → 𝑏 <Q (𝑎 +Q 𝑃))
8779, 82, 85, 86syl12anc 1236 . . . . . . . . . . . . . 14 (((𝑎 = (𝑥 +Q0 ([⟨𝑚, 1o⟩] ~Q0 ·Q0 𝑞)) ∧ 𝑏 = (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞))) ∧ ((𝑥Q𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃) ∧ (𝑚 ∈ ω ∧ (𝑎𝐿𝑏𝑈)))) → 𝑏 <Q (𝑎 +Q 𝑃))
8878, 87jca 306 . . . . . . . . . . . . 13 (((𝑎 = (𝑥 +Q0 ([⟨𝑚, 1o⟩] ~Q0 ·Q0 𝑞)) ∧ 𝑏 = (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞))) ∧ ((𝑥Q𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃) ∧ (𝑚 ∈ ω ∧ (𝑎𝐿𝑏𝑈)))) → (𝑏𝑈𝑏 <Q (𝑎 +Q 𝑃)))
8976, 88jca 306 . . . . . . . . . . . 12 (((𝑎 = (𝑥 +Q0 ([⟨𝑚, 1o⟩] ~Q0 ·Q0 𝑞)) ∧ 𝑏 = (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞))) ∧ ((𝑥Q𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃) ∧ (𝑚 ∈ ω ∧ (𝑎𝐿𝑏𝑈)))) → (𝑎𝐿 ∧ (𝑏𝑈𝑏 <Q (𝑎 +Q 𝑃))))
9089ancom1s 569 . . . . . . . . . . 11 (((𝑏 = (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞)) ∧ 𝑎 = (𝑥 +Q0 ([⟨𝑚, 1o⟩] ~Q0 ·Q0 𝑞))) ∧ ((𝑥Q𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃) ∧ (𝑚 ∈ ω ∧ (𝑎𝐿𝑏𝑈)))) → (𝑎𝐿 ∧ (𝑏𝑈𝑏 <Q (𝑎 +Q 𝑃))))
9190anasss 399 . . . . . . . . . 10 ((𝑏 = (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞)) ∧ (𝑎 = (𝑥 +Q0 ([⟨𝑚, 1o⟩] ~Q0 ·Q0 𝑞)) ∧ ((𝑥Q𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃) ∧ (𝑚 ∈ ω ∧ (𝑎𝐿𝑏𝑈))))) → (𝑎𝐿 ∧ (𝑏𝑈𝑏 <Q (𝑎 +Q 𝑃))))
92912eximi 1601 . . . . . . . . 9 (∃𝑏𝑎(𝑏 = (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞)) ∧ (𝑎 = (𝑥 +Q0 ([⟨𝑚, 1o⟩] ~Q0 ·Q0 𝑞)) ∧ ((𝑥Q𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃) ∧ (𝑚 ∈ ω ∧ (𝑎𝐿𝑏𝑈))))) → ∃𝑏𝑎(𝑎𝐿 ∧ (𝑏𝑈𝑏 <Q (𝑎 +Q 𝑃))))
9374, 92syl 14 . . . . . . . 8 (((𝑥Q𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃) ∧ (𝑚 ∈ ω ∧ ((𝑥 +Q0 ([⟨𝑚, 1o⟩] ~Q0 ·Q0 𝑞)) ∈ 𝐿 ∧ (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞)) ∈ 𝑈))) → ∃𝑏𝑎(𝑎𝐿 ∧ (𝑏𝑈𝑏 <Q (𝑎 +Q 𝑃))))
9493exlimiv 1598 . . . . . . 7 (∃𝑚((𝑥Q𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃) ∧ (𝑚 ∈ ω ∧ ((𝑥 +Q0 ([⟨𝑚, 1o⟩] ~Q0 ·Q0 𝑞)) ∈ 𝐿 ∧ (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞)) ∈ 𝑈))) → ∃𝑏𝑎(𝑎𝐿 ∧ (𝑏𝑈𝑏 <Q (𝑎 +Q 𝑃))))
9553, 94syl 14 . . . . . 6 ((((𝑥Q𝑥𝐿) ∧ (𝑦Q𝑦𝑈) ∧ ((⟨𝐿, 𝑈⟩ ∈ P𝑃Q) ∧ (𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃))) ∧ (𝑛N ∧ (1o <N 𝑛𝑦 <Q (𝑥 +Q ([⟨𝑛, 1o⟩] ~Q ·Q 𝑞))))) → ∃𝑏𝑎(𝑎𝐿 ∧ (𝑏𝑈𝑏 <Q (𝑎 +Q 𝑃))))
9695exlimivv 1896 . . . . 5 (∃𝑞𝑛(((𝑥Q𝑥𝐿) ∧ (𝑦Q𝑦𝑈) ∧ ((⟨𝐿, 𝑈⟩ ∈ P𝑃Q) ∧ (𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃))) ∧ (𝑛N ∧ (1o <N 𝑛𝑦 <Q (𝑥 +Q ([⟨𝑛, 1o⟩] ~Q ·Q 𝑞))))) → ∃𝑏𝑎(𝑎𝐿 ∧ (𝑏𝑈𝑏 <Q (𝑎 +Q 𝑃))))
9796exlimivv 1896 . . . 4 (∃𝑥𝑦𝑞𝑛(((𝑥Q𝑥𝐿) ∧ (𝑦Q𝑦𝑈) ∧ ((⟨𝐿, 𝑈⟩ ∈ P𝑃Q) ∧ (𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃))) ∧ (𝑛N ∧ (1o <N 𝑛𝑦 <Q (𝑥 +Q ([⟨𝑛, 1o⟩] ~Q ·Q 𝑞))))) → ∃𝑏𝑎(𝑎𝐿 ∧ (𝑏𝑈𝑏 <Q (𝑎 +Q 𝑃))))
9817, 30, 973syl 17 . . 3 ((⟨𝐿, 𝑈⟩ ∈ P𝑃Q) → ∃𝑏𝑎(𝑎𝐿 ∧ (𝑏𝑈𝑏 <Q (𝑎 +Q 𝑃))))
99 excom 1664 . . 3 (∃𝑏𝑎(𝑎𝐿 ∧ (𝑏𝑈𝑏 <Q (𝑎 +Q 𝑃))) ↔ ∃𝑎𝑏(𝑎𝐿 ∧ (𝑏𝑈𝑏 <Q (𝑎 +Q 𝑃))))
10098, 99sylib 122 . 2 ((⟨𝐿, 𝑈⟩ ∈ P𝑃Q) → ∃𝑎𝑏(𝑎𝐿 ∧ (𝑏𝑈𝑏 <Q (𝑎 +Q 𝑃))))
101 19.42v 1906 . . . . 5 (∃𝑏(𝑎𝐿 ∧ (𝑏𝑈𝑏 <Q (𝑎 +Q 𝑃))) ↔ (𝑎𝐿 ∧ ∃𝑏(𝑏𝑈𝑏 <Q (𝑎 +Q 𝑃))))
102 df-rex 2461 . . . . . 6 (∃𝑏𝑈 𝑏 <Q (𝑎 +Q 𝑃) ↔ ∃𝑏(𝑏𝑈𝑏 <Q (𝑎 +Q 𝑃)))
103102anbi2i 457 . . . . 5 ((𝑎𝐿 ∧ ∃𝑏𝑈 𝑏 <Q (𝑎 +Q 𝑃)) ↔ (𝑎𝐿 ∧ ∃𝑏(𝑏𝑈𝑏 <Q (𝑎 +Q 𝑃))))
104101, 103bitr4i 187 . . . 4 (∃𝑏(𝑎𝐿 ∧ (𝑏𝑈𝑏 <Q (𝑎 +Q 𝑃))) ↔ (𝑎𝐿 ∧ ∃𝑏𝑈 𝑏 <Q (𝑎 +Q 𝑃)))
105104exbii 1605 . . 3 (∃𝑎𝑏(𝑎𝐿 ∧ (𝑏𝑈𝑏 <Q (𝑎 +Q 𝑃))) ↔ ∃𝑎(𝑎𝐿 ∧ ∃𝑏𝑈 𝑏 <Q (𝑎 +Q 𝑃)))
106 df-rex 2461 . . 3 (∃𝑎𝐿𝑏𝑈 𝑏 <Q (𝑎 +Q 𝑃) ↔ ∃𝑎(𝑎𝐿 ∧ ∃𝑏𝑈 𝑏 <Q (𝑎 +Q 𝑃)))
107105, 106bitr4i 187 . 2 (∃𝑎𝑏(𝑎𝐿 ∧ (𝑏𝑈𝑏 <Q (𝑎 +Q 𝑃))) ↔ ∃𝑎𝐿𝑏𝑈 𝑏 <Q (𝑎 +Q 𝑃))
108100, 107sylib 122 1 ((⟨𝐿, 𝑈⟩ ∈ P𝑃Q) → ∃𝑎𝐿𝑏𝑈 𝑏 <Q (𝑎 +Q 𝑃))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 978   = wceq 1353  wex 1492  wcel 2148  wrex 2456  cop 3594   class class class wbr 4000  ωcom 4586  (class class class)co 5869  1oc1o 6404  2oc2o 6405   +o coa 6408  [cec 6527  Ncnpi 7262   <N clti 7265   ~Q ceq 7269  Qcnq 7270   +Q cplq 7272   ·Q cmq 7273   <Q cltq 7275   ~Q0 ceq0 7276   +Q0 cplq0 7279   ·Q0 cmq0 7280  Pcnp 7281
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4115  ax-sep 4118  ax-nul 4126  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-iinf 4584
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-iun 3886  df-br 4001  df-opab 4062  df-mpt 4063  df-tr 4099  df-eprel 4286  df-id 4290  df-po 4293  df-iso 4294  df-iord 4363  df-on 4365  df-suc 4368  df-iom 4587  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-f1 5217  df-fo 5218  df-f1o 5219  df-fv 5220  df-ov 5872  df-oprab 5873  df-mpo 5874  df-1st 6135  df-2nd 6136  df-recs 6300  df-irdg 6365  df-1o 6411  df-2o 6412  df-oadd 6415  df-omul 6416  df-er 6529  df-ec 6531  df-qs 6535  df-ni 7294  df-pli 7295  df-mi 7296  df-lti 7297  df-plpq 7334  df-mpq 7335  df-enq 7337  df-nqqs 7338  df-plqqs 7339  df-mqqs 7340  df-1nqqs 7341  df-rq 7342  df-ltnqqs 7343  df-enq0 7414  df-nq0 7415  df-0nq0 7416  df-plq0 7417  df-mq0 7418  df-inp 7456
This theorem is referenced by:  prarloc2  7494  addlocpr  7526  prmuloc  7556  ltaddpr  7587  ltexprlemloc  7597  ltexprlemrl  7600  ltexprlemru  7602
  Copyright terms: Public domain W3C validator