ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prarloc GIF version

Theorem prarloc 7686
Description: A Dedekind cut is arithmetically located. Part of Proposition 11.15 of [BauerTaylor], p. 52, slightly modified. It states that given a tolerance 𝑃, there are elements of the lower and upper cut which are within that tolerance of each other.

Usually, proofs will be shorter if they use prarloc2 7687 instead. (Contributed by Jim Kingdon, 22-Oct-2019.)

Assertion
Ref Expression
prarloc ((⟨𝐿, 𝑈⟩ ∈ P𝑃Q) → ∃𝑎𝐿𝑏𝑈 𝑏 <Q (𝑎 +Q 𝑃))
Distinct variable groups:   𝐿,𝑎,𝑏   𝑃,𝑎,𝑏   𝑈,𝑎,𝑏

Proof of Theorem prarloc
Dummy variables 𝑚 𝑛 𝑞 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prml 7660 . . . . . . 7 (⟨𝐿, 𝑈⟩ ∈ P → ∃𝑥Q 𝑥𝐿)
2 df-rex 2514 . . . . . . 7 (∃𝑥Q 𝑥𝐿 ↔ ∃𝑥(𝑥Q𝑥𝐿))
31, 2sylib 122 . . . . . 6 (⟨𝐿, 𝑈⟩ ∈ P → ∃𝑥(𝑥Q𝑥𝐿))
43adantr 276 . . . . 5 ((⟨𝐿, 𝑈⟩ ∈ P𝑃Q) → ∃𝑥(𝑥Q𝑥𝐿))
5 prmu 7661 . . . . . . 7 (⟨𝐿, 𝑈⟩ ∈ P → ∃𝑦Q 𝑦𝑈)
6 df-rex 2514 . . . . . . 7 (∃𝑦Q 𝑦𝑈 ↔ ∃𝑦(𝑦Q𝑦𝑈))
75, 6sylib 122 . . . . . 6 (⟨𝐿, 𝑈⟩ ∈ P → ∃𝑦(𝑦Q𝑦𝑈))
87adantr 276 . . . . 5 ((⟨𝐿, 𝑈⟩ ∈ P𝑃Q) → ∃𝑦(𝑦Q𝑦𝑈))
9 subhalfnqq 7597 . . . . . . . . 9 (𝑃Q → ∃𝑞Q (𝑞 +Q 𝑞) <Q 𝑃)
109adantl 277 . . . . . . . 8 ((⟨𝐿, 𝑈⟩ ∈ P𝑃Q) → ∃𝑞Q (𝑞 +Q 𝑞) <Q 𝑃)
11 df-rex 2514 . . . . . . . 8 (∃𝑞Q (𝑞 +Q 𝑞) <Q 𝑃 ↔ ∃𝑞(𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃))
1210, 11sylib 122 . . . . . . 7 ((⟨𝐿, 𝑈⟩ ∈ P𝑃Q) → ∃𝑞(𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃))
1312ancli 323 . . . . . 6 ((⟨𝐿, 𝑈⟩ ∈ P𝑃Q) → ((⟨𝐿, 𝑈⟩ ∈ P𝑃Q) ∧ ∃𝑞(𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃)))
14 19.42v 1953 . . . . . 6 (∃𝑞((⟨𝐿, 𝑈⟩ ∈ P𝑃Q) ∧ (𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃)) ↔ ((⟨𝐿, 𝑈⟩ ∈ P𝑃Q) ∧ ∃𝑞(𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃)))
1513, 14sylibr 134 . . . . 5 ((⟨𝐿, 𝑈⟩ ∈ P𝑃Q) → ∃𝑞((⟨𝐿, 𝑈⟩ ∈ P𝑃Q) ∧ (𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃)))
16 eeeanv 1984 . . . . 5 (∃𝑥𝑦𝑞((𝑥Q𝑥𝐿) ∧ (𝑦Q𝑦𝑈) ∧ ((⟨𝐿, 𝑈⟩ ∈ P𝑃Q) ∧ (𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃))) ↔ (∃𝑥(𝑥Q𝑥𝐿) ∧ ∃𝑦(𝑦Q𝑦𝑈) ∧ ∃𝑞((⟨𝐿, 𝑈⟩ ∈ P𝑃Q) ∧ (𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃))))
174, 8, 15, 16syl3anbrc 1205 . . . 4 ((⟨𝐿, 𝑈⟩ ∈ P𝑃Q) → ∃𝑥𝑦𝑞((𝑥Q𝑥𝐿) ∧ (𝑦Q𝑦𝑈) ∧ ((⟨𝐿, 𝑈⟩ ∈ P𝑃Q) ∧ (𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃))))
18 prarloclemarch2 7602 . . . . . . . . . . . . . 14 ((𝑦Q𝑥Q𝑞Q) → ∃𝑛N (1o <N 𝑛𝑦 <Q (𝑥 +Q ([⟨𝑛, 1o⟩] ~Q ·Q 𝑞))))
19 df-rex 2514 . . . . . . . . . . . . . 14 (∃𝑛N (1o <N 𝑛𝑦 <Q (𝑥 +Q ([⟨𝑛, 1o⟩] ~Q ·Q 𝑞))) ↔ ∃𝑛(𝑛N ∧ (1o <N 𝑛𝑦 <Q (𝑥 +Q ([⟨𝑛, 1o⟩] ~Q ·Q 𝑞)))))
2018, 19sylib 122 . . . . . . . . . . . . 13 ((𝑦Q𝑥Q𝑞Q) → ∃𝑛(𝑛N ∧ (1o <N 𝑛𝑦 <Q (𝑥 +Q ([⟨𝑛, 1o⟩] ~Q ·Q 𝑞)))))
21203com12 1231 . . . . . . . . . . . 12 ((𝑥Q𝑦Q𝑞Q) → ∃𝑛(𝑛N ∧ (1o <N 𝑛𝑦 <Q (𝑥 +Q ([⟨𝑛, 1o⟩] ~Q ·Q 𝑞)))))
22213adant1r 1255 . . . . . . . . . . 11 (((𝑥Q𝑥𝐿) ∧ 𝑦Q𝑞Q) → ∃𝑛(𝑛N ∧ (1o <N 𝑛𝑦 <Q (𝑥 +Q ([⟨𝑛, 1o⟩] ~Q ·Q 𝑞)))))
23223adant2r 1257 . . . . . . . . . 10 (((𝑥Q𝑥𝐿) ∧ (𝑦Q𝑦𝑈) ∧ 𝑞Q) → ∃𝑛(𝑛N ∧ (1o <N 𝑛𝑦 <Q (𝑥 +Q ([⟨𝑛, 1o⟩] ~Q ·Q 𝑞)))))
24233adant3r 1259 . . . . . . . . 9 (((𝑥Q𝑥𝐿) ∧ (𝑦Q𝑦𝑈) ∧ (𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃)) → ∃𝑛(𝑛N ∧ (1o <N 𝑛𝑦 <Q (𝑥 +Q ([⟨𝑛, 1o⟩] ~Q ·Q 𝑞)))))
25243adant3l 1258 . . . . . . . 8 (((𝑥Q𝑥𝐿) ∧ (𝑦Q𝑦𝑈) ∧ ((⟨𝐿, 𝑈⟩ ∈ P𝑃Q) ∧ (𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃))) → ∃𝑛(𝑛N ∧ (1o <N 𝑛𝑦 <Q (𝑥 +Q ([⟨𝑛, 1o⟩] ~Q ·Q 𝑞)))))
2625ancli 323 . . . . . . 7 (((𝑥Q𝑥𝐿) ∧ (𝑦Q𝑦𝑈) ∧ ((⟨𝐿, 𝑈⟩ ∈ P𝑃Q) ∧ (𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃))) → (((𝑥Q𝑥𝐿) ∧ (𝑦Q𝑦𝑈) ∧ ((⟨𝐿, 𝑈⟩ ∈ P𝑃Q) ∧ (𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃))) ∧ ∃𝑛(𝑛N ∧ (1o <N 𝑛𝑦 <Q (𝑥 +Q ([⟨𝑛, 1o⟩] ~Q ·Q 𝑞))))))
27 19.42v 1953 . . . . . . 7 (∃𝑛(((𝑥Q𝑥𝐿) ∧ (𝑦Q𝑦𝑈) ∧ ((⟨𝐿, 𝑈⟩ ∈ P𝑃Q) ∧ (𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃))) ∧ (𝑛N ∧ (1o <N 𝑛𝑦 <Q (𝑥 +Q ([⟨𝑛, 1o⟩] ~Q ·Q 𝑞))))) ↔ (((𝑥Q𝑥𝐿) ∧ (𝑦Q𝑦𝑈) ∧ ((⟨𝐿, 𝑈⟩ ∈ P𝑃Q) ∧ (𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃))) ∧ ∃𝑛(𝑛N ∧ (1o <N 𝑛𝑦 <Q (𝑥 +Q ([⟨𝑛, 1o⟩] ~Q ·Q 𝑞))))))
2826, 27sylibr 134 . . . . . 6 (((𝑥Q𝑥𝐿) ∧ (𝑦Q𝑦𝑈) ∧ ((⟨𝐿, 𝑈⟩ ∈ P𝑃Q) ∧ (𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃))) → ∃𝑛(((𝑥Q𝑥𝐿) ∧ (𝑦Q𝑦𝑈) ∧ ((⟨𝐿, 𝑈⟩ ∈ P𝑃Q) ∧ (𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃))) ∧ (𝑛N ∧ (1o <N 𝑛𝑦 <Q (𝑥 +Q ([⟨𝑛, 1o⟩] ~Q ·Q 𝑞))))))
29282eximi 1647 . . . . 5 (∃𝑦𝑞((𝑥Q𝑥𝐿) ∧ (𝑦Q𝑦𝑈) ∧ ((⟨𝐿, 𝑈⟩ ∈ P𝑃Q) ∧ (𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃))) → ∃𝑦𝑞𝑛(((𝑥Q𝑥𝐿) ∧ (𝑦Q𝑦𝑈) ∧ ((⟨𝐿, 𝑈⟩ ∈ P𝑃Q) ∧ (𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃))) ∧ (𝑛N ∧ (1o <N 𝑛𝑦 <Q (𝑥 +Q ([⟨𝑛, 1o⟩] ~Q ·Q 𝑞))))))
3029eximi 1646 . . . 4 (∃𝑥𝑦𝑞((𝑥Q𝑥𝐿) ∧ (𝑦Q𝑦𝑈) ∧ ((⟨𝐿, 𝑈⟩ ∈ P𝑃Q) ∧ (𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃))) → ∃𝑥𝑦𝑞𝑛(((𝑥Q𝑥𝐿) ∧ (𝑦Q𝑦𝑈) ∧ ((⟨𝐿, 𝑈⟩ ∈ P𝑃Q) ∧ (𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃))) ∧ (𝑛N ∧ (1o <N 𝑛𝑦 <Q (𝑥 +Q ([⟨𝑛, 1o⟩] ~Q ·Q 𝑞))))))
31 simpl1l 1072 . . . . . . . . . 10 ((((𝑥Q𝑥𝐿) ∧ (𝑦Q𝑦𝑈) ∧ ((⟨𝐿, 𝑈⟩ ∈ P𝑃Q) ∧ (𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃))) ∧ (𝑛N ∧ (1o <N 𝑛𝑦 <Q (𝑥 +Q ([⟨𝑛, 1o⟩] ~Q ·Q 𝑞))))) → 𝑥Q)
32 simp3rl 1094 . . . . . . . . . . 11 (((𝑥Q𝑥𝐿) ∧ (𝑦Q𝑦𝑈) ∧ ((⟨𝐿, 𝑈⟩ ∈ P𝑃Q) ∧ (𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃))) → 𝑞Q)
3332adantr 276 . . . . . . . . . 10 ((((𝑥Q𝑥𝐿) ∧ (𝑦Q𝑦𝑈) ∧ ((⟨𝐿, 𝑈⟩ ∈ P𝑃Q) ∧ (𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃))) ∧ (𝑛N ∧ (1o <N 𝑛𝑦 <Q (𝑥 +Q ([⟨𝑛, 1o⟩] ~Q ·Q 𝑞))))) → 𝑞Q)
34 simp3rr 1095 . . . . . . . . . . 11 (((𝑥Q𝑥𝐿) ∧ (𝑦Q𝑦𝑈) ∧ ((⟨𝐿, 𝑈⟩ ∈ P𝑃Q) ∧ (𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃))) → (𝑞 +Q 𝑞) <Q 𝑃)
3534adantr 276 . . . . . . . . . 10 ((((𝑥Q𝑥𝐿) ∧ (𝑦Q𝑦𝑈) ∧ ((⟨𝐿, 𝑈⟩ ∈ P𝑃Q) ∧ (𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃))) ∧ (𝑛N ∧ (1o <N 𝑛𝑦 <Q (𝑥 +Q ([⟨𝑛, 1o⟩] ~Q ·Q 𝑞))))) → (𝑞 +Q 𝑞) <Q 𝑃)
3631, 33, 353jca 1201 . . . . . . . . 9 ((((𝑥Q𝑥𝐿) ∧ (𝑦Q𝑦𝑈) ∧ ((⟨𝐿, 𝑈⟩ ∈ P𝑃Q) ∧ (𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃))) ∧ (𝑛N ∧ (1o <N 𝑛𝑦 <Q (𝑥 +Q ([⟨𝑛, 1o⟩] ~Q ·Q 𝑞))))) → (𝑥Q𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃))
37 simp3ll 1092 . . . . . . . . . . . 12 (((𝑥Q𝑥𝐿) ∧ (𝑦Q𝑦𝑈) ∧ ((⟨𝐿, 𝑈⟩ ∈ P𝑃Q) ∧ (𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃))) → ⟨𝐿, 𝑈⟩ ∈ P)
3837adantr 276 . . . . . . . . . . 11 ((((𝑥Q𝑥𝐿) ∧ (𝑦Q𝑦𝑈) ∧ ((⟨𝐿, 𝑈⟩ ∈ P𝑃Q) ∧ (𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃))) ∧ (𝑛N ∧ (1o <N 𝑛𝑦 <Q (𝑥 +Q ([⟨𝑛, 1o⟩] ~Q ·Q 𝑞))))) → ⟨𝐿, 𝑈⟩ ∈ P)
39 simpl1r 1073 . . . . . . . . . . 11 ((((𝑥Q𝑥𝐿) ∧ (𝑦Q𝑦𝑈) ∧ ((⟨𝐿, 𝑈⟩ ∈ P𝑃Q) ∧ (𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃))) ∧ (𝑛N ∧ (1o <N 𝑛𝑦 <Q (𝑥 +Q ([⟨𝑛, 1o⟩] ~Q ·Q 𝑞))))) → 𝑥𝐿)
40 simprl 529 . . . . . . . . . . 11 ((((𝑥Q𝑥𝐿) ∧ (𝑦Q𝑦𝑈) ∧ ((⟨𝐿, 𝑈⟩ ∈ P𝑃Q) ∧ (𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃))) ∧ (𝑛N ∧ (1o <N 𝑛𝑦 <Q (𝑥 +Q ([⟨𝑛, 1o⟩] ~Q ·Q 𝑞))))) → 𝑛N)
41 simprrl 539 . . . . . . . . . . 11 ((((𝑥Q𝑥𝐿) ∧ (𝑦Q𝑦𝑈) ∧ ((⟨𝐿, 𝑈⟩ ∈ P𝑃Q) ∧ (𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃))) ∧ (𝑛N ∧ (1o <N 𝑛𝑦 <Q (𝑥 +Q ([⟨𝑛, 1o⟩] ~Q ·Q 𝑞))))) → 1o <N 𝑛)
42 simprrr 540 . . . . . . . . . . . 12 ((((𝑥Q𝑥𝐿) ∧ (𝑦Q𝑦𝑈) ∧ ((⟨𝐿, 𝑈⟩ ∈ P𝑃Q) ∧ (𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃))) ∧ (𝑛N ∧ (1o <N 𝑛𝑦 <Q (𝑥 +Q ([⟨𝑛, 1o⟩] ~Q ·Q 𝑞))))) → 𝑦 <Q (𝑥 +Q ([⟨𝑛, 1o⟩] ~Q ·Q 𝑞)))
43 simpl2r 1075 . . . . . . . . . . . . 13 ((((𝑥Q𝑥𝐿) ∧ (𝑦Q𝑦𝑈) ∧ ((⟨𝐿, 𝑈⟩ ∈ P𝑃Q) ∧ (𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃))) ∧ (𝑛N ∧ (1o <N 𝑛𝑦 <Q (𝑥 +Q ([⟨𝑛, 1o⟩] ~Q ·Q 𝑞))))) → 𝑦𝑈)
44 prcunqu 7668 . . . . . . . . . . . . 13 ((⟨𝐿, 𝑈⟩ ∈ P𝑦𝑈) → (𝑦 <Q (𝑥 +Q ([⟨𝑛, 1o⟩] ~Q ·Q 𝑞)) → (𝑥 +Q ([⟨𝑛, 1o⟩] ~Q ·Q 𝑞)) ∈ 𝑈))
4538, 43, 44syl2anc 411 . . . . . . . . . . . 12 ((((𝑥Q𝑥𝐿) ∧ (𝑦Q𝑦𝑈) ∧ ((⟨𝐿, 𝑈⟩ ∈ P𝑃Q) ∧ (𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃))) ∧ (𝑛N ∧ (1o <N 𝑛𝑦 <Q (𝑥 +Q ([⟨𝑛, 1o⟩] ~Q ·Q 𝑞))))) → (𝑦 <Q (𝑥 +Q ([⟨𝑛, 1o⟩] ~Q ·Q 𝑞)) → (𝑥 +Q ([⟨𝑛, 1o⟩] ~Q ·Q 𝑞)) ∈ 𝑈))
4642, 45mpd 13 . . . . . . . . . . 11 ((((𝑥Q𝑥𝐿) ∧ (𝑦Q𝑦𝑈) ∧ ((⟨𝐿, 𝑈⟩ ∈ P𝑃Q) ∧ (𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃))) ∧ (𝑛N ∧ (1o <N 𝑛𝑦 <Q (𝑥 +Q ([⟨𝑛, 1o⟩] ~Q ·Q 𝑞))))) → (𝑥 +Q ([⟨𝑛, 1o⟩] ~Q ·Q 𝑞)) ∈ 𝑈)
47 prarloclem 7684 . . . . . . . . . . 11 (((⟨𝐿, 𝑈⟩ ∈ P𝑥𝐿) ∧ (𝑛N𝑞Q ∧ 1o <N 𝑛) ∧ (𝑥 +Q ([⟨𝑛, 1o⟩] ~Q ·Q 𝑞)) ∈ 𝑈) → ∃𝑚 ∈ ω ((𝑥 +Q0 ([⟨𝑚, 1o⟩] ~Q0 ·Q0 𝑞)) ∈ 𝐿 ∧ (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞)) ∈ 𝑈))
4838, 39, 40, 33, 41, 46, 47syl231anc 1291 . . . . . . . . . 10 ((((𝑥Q𝑥𝐿) ∧ (𝑦Q𝑦𝑈) ∧ ((⟨𝐿, 𝑈⟩ ∈ P𝑃Q) ∧ (𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃))) ∧ (𝑛N ∧ (1o <N 𝑛𝑦 <Q (𝑥 +Q ([⟨𝑛, 1o⟩] ~Q ·Q 𝑞))))) → ∃𝑚 ∈ ω ((𝑥 +Q0 ([⟨𝑚, 1o⟩] ~Q0 ·Q0 𝑞)) ∈ 𝐿 ∧ (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞)) ∈ 𝑈))
49 df-rex 2514 . . . . . . . . . 10 (∃𝑚 ∈ ω ((𝑥 +Q0 ([⟨𝑚, 1o⟩] ~Q0 ·Q0 𝑞)) ∈ 𝐿 ∧ (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞)) ∈ 𝑈) ↔ ∃𝑚(𝑚 ∈ ω ∧ ((𝑥 +Q0 ([⟨𝑚, 1o⟩] ~Q0 ·Q0 𝑞)) ∈ 𝐿 ∧ (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞)) ∈ 𝑈)))
5048, 49sylib 122 . . . . . . . . 9 ((((𝑥Q𝑥𝐿) ∧ (𝑦Q𝑦𝑈) ∧ ((⟨𝐿, 𝑈⟩ ∈ P𝑃Q) ∧ (𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃))) ∧ (𝑛N ∧ (1o <N 𝑛𝑦 <Q (𝑥 +Q ([⟨𝑛, 1o⟩] ~Q ·Q 𝑞))))) → ∃𝑚(𝑚 ∈ ω ∧ ((𝑥 +Q0 ([⟨𝑚, 1o⟩] ~Q0 ·Q0 𝑞)) ∈ 𝐿 ∧ (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞)) ∈ 𝑈)))
5136, 50jca 306 . . . . . . . 8 ((((𝑥Q𝑥𝐿) ∧ (𝑦Q𝑦𝑈) ∧ ((⟨𝐿, 𝑈⟩ ∈ P𝑃Q) ∧ (𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃))) ∧ (𝑛N ∧ (1o <N 𝑛𝑦 <Q (𝑥 +Q ([⟨𝑛, 1o⟩] ~Q ·Q 𝑞))))) → ((𝑥Q𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃) ∧ ∃𝑚(𝑚 ∈ ω ∧ ((𝑥 +Q0 ([⟨𝑚, 1o⟩] ~Q0 ·Q0 𝑞)) ∈ 𝐿 ∧ (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞)) ∈ 𝑈))))
52 19.42v 1953 . . . . . . . 8 (∃𝑚((𝑥Q𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃) ∧ (𝑚 ∈ ω ∧ ((𝑥 +Q0 ([⟨𝑚, 1o⟩] ~Q0 ·Q0 𝑞)) ∈ 𝐿 ∧ (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞)) ∈ 𝑈))) ↔ ((𝑥Q𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃) ∧ ∃𝑚(𝑚 ∈ ω ∧ ((𝑥 +Q0 ([⟨𝑚, 1o⟩] ~Q0 ·Q0 𝑞)) ∈ 𝐿 ∧ (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞)) ∈ 𝑈))))
5351, 52sylibr 134 . . . . . . 7 ((((𝑥Q𝑥𝐿) ∧ (𝑦Q𝑦𝑈) ∧ ((⟨𝐿, 𝑈⟩ ∈ P𝑃Q) ∧ (𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃))) ∧ (𝑛N ∧ (1o <N 𝑛𝑦 <Q (𝑥 +Q ([⟨𝑛, 1o⟩] ~Q ·Q 𝑞))))) → ∃𝑚((𝑥Q𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃) ∧ (𝑚 ∈ ω ∧ ((𝑥 +Q0 ([⟨𝑚, 1o⟩] ~Q0 ·Q0 𝑞)) ∈ 𝐿 ∧ (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞)) ∈ 𝑈))))
54 simprrl 539 . . . . . . . . . . . 12 (((𝑥Q𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃) ∧ (𝑚 ∈ ω ∧ ((𝑥 +Q0 ([⟨𝑚, 1o⟩] ~Q0 ·Q0 𝑞)) ∈ 𝐿 ∧ (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞)) ∈ 𝑈))) → (𝑥 +Q0 ([⟨𝑚, 1o⟩] ~Q0 ·Q0 𝑞)) ∈ 𝐿)
55 eleq1 2292 . . . . . . . . . . . . . . . . 17 (𝑎 = (𝑥 +Q0 ([⟨𝑚, 1o⟩] ~Q0 ·Q0 𝑞)) → (𝑎𝐿 ↔ (𝑥 +Q0 ([⟨𝑚, 1o⟩] ~Q0 ·Q0 𝑞)) ∈ 𝐿))
5655anbi1d 465 . . . . . . . . . . . . . . . 16 (𝑎 = (𝑥 +Q0 ([⟨𝑚, 1o⟩] ~Q0 ·Q0 𝑞)) → ((𝑎𝐿 ∧ (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞)) ∈ 𝑈) ↔ ((𝑥 +Q0 ([⟨𝑚, 1o⟩] ~Q0 ·Q0 𝑞)) ∈ 𝐿 ∧ (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞)) ∈ 𝑈)))
5756anbi2d 464 . . . . . . . . . . . . . . 15 (𝑎 = (𝑥 +Q0 ([⟨𝑚, 1o⟩] ~Q0 ·Q0 𝑞)) → ((𝑚 ∈ ω ∧ (𝑎𝐿 ∧ (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞)) ∈ 𝑈)) ↔ (𝑚 ∈ ω ∧ ((𝑥 +Q0 ([⟨𝑚, 1o⟩] ~Q0 ·Q0 𝑞)) ∈ 𝐿 ∧ (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞)) ∈ 𝑈))))
5857anbi2d 464 . . . . . . . . . . . . . 14 (𝑎 = (𝑥 +Q0 ([⟨𝑚, 1o⟩] ~Q0 ·Q0 𝑞)) → (((𝑥Q𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃) ∧ (𝑚 ∈ ω ∧ (𝑎𝐿 ∧ (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞)) ∈ 𝑈))) ↔ ((𝑥Q𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃) ∧ (𝑚 ∈ ω ∧ ((𝑥 +Q0 ([⟨𝑚, 1o⟩] ~Q0 ·Q0 𝑞)) ∈ 𝐿 ∧ (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞)) ∈ 𝑈)))))
5958ceqsexgv 2932 . . . . . . . . . . . . 13 ((𝑥 +Q0 ([⟨𝑚, 1o⟩] ~Q0 ·Q0 𝑞)) ∈ 𝐿 → (∃𝑎(𝑎 = (𝑥 +Q0 ([⟨𝑚, 1o⟩] ~Q0 ·Q0 𝑞)) ∧ ((𝑥Q𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃) ∧ (𝑚 ∈ ω ∧ (𝑎𝐿 ∧ (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞)) ∈ 𝑈)))) ↔ ((𝑥Q𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃) ∧ (𝑚 ∈ ω ∧ ((𝑥 +Q0 ([⟨𝑚, 1o⟩] ~Q0 ·Q0 𝑞)) ∈ 𝐿 ∧ (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞)) ∈ 𝑈)))))
6059biimprcd 160 . . . . . . . . . . . 12 (((𝑥Q𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃) ∧ (𝑚 ∈ ω ∧ ((𝑥 +Q0 ([⟨𝑚, 1o⟩] ~Q0 ·Q0 𝑞)) ∈ 𝐿 ∧ (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞)) ∈ 𝑈))) → ((𝑥 +Q0 ([⟨𝑚, 1o⟩] ~Q0 ·Q0 𝑞)) ∈ 𝐿 → ∃𝑎(𝑎 = (𝑥 +Q0 ([⟨𝑚, 1o⟩] ~Q0 ·Q0 𝑞)) ∧ ((𝑥Q𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃) ∧ (𝑚 ∈ ω ∧ (𝑎𝐿 ∧ (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞)) ∈ 𝑈))))))
6154, 60mpd 13 . . . . . . . . . . 11 (((𝑥Q𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃) ∧ (𝑚 ∈ ω ∧ ((𝑥 +Q0 ([⟨𝑚, 1o⟩] ~Q0 ·Q0 𝑞)) ∈ 𝐿 ∧ (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞)) ∈ 𝑈))) → ∃𝑎(𝑎 = (𝑥 +Q0 ([⟨𝑚, 1o⟩] ~Q0 ·Q0 𝑞)) ∧ ((𝑥Q𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃) ∧ (𝑚 ∈ ω ∧ (𝑎𝐿 ∧ (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞)) ∈ 𝑈)))))
62 simprrr 540 . . . . . . . . . . 11 (((𝑥Q𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃) ∧ (𝑚 ∈ ω ∧ ((𝑥 +Q0 ([⟨𝑚, 1o⟩] ~Q0 ·Q0 𝑞)) ∈ 𝐿 ∧ (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞)) ∈ 𝑈))) → (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞)) ∈ 𝑈)
63 eleq1 2292 . . . . . . . . . . . . . . . . . 18 (𝑏 = (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞)) → (𝑏𝑈 ↔ (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞)) ∈ 𝑈))
6463anbi2d 464 . . . . . . . . . . . . . . . . 17 (𝑏 = (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞)) → ((𝑎𝐿𝑏𝑈) ↔ (𝑎𝐿 ∧ (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞)) ∈ 𝑈)))
6564anbi2d 464 . . . . . . . . . . . . . . . 16 (𝑏 = (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞)) → ((𝑚 ∈ ω ∧ (𝑎𝐿𝑏𝑈)) ↔ (𝑚 ∈ ω ∧ (𝑎𝐿 ∧ (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞)) ∈ 𝑈))))
6665anbi2d 464 . . . . . . . . . . . . . . 15 (𝑏 = (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞)) → (((𝑥Q𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃) ∧ (𝑚 ∈ ω ∧ (𝑎𝐿𝑏𝑈))) ↔ ((𝑥Q𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃) ∧ (𝑚 ∈ ω ∧ (𝑎𝐿 ∧ (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞)) ∈ 𝑈)))))
6766anbi2d 464 . . . . . . . . . . . . . 14 (𝑏 = (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞)) → ((𝑎 = (𝑥 +Q0 ([⟨𝑚, 1o⟩] ~Q0 ·Q0 𝑞)) ∧ ((𝑥Q𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃) ∧ (𝑚 ∈ ω ∧ (𝑎𝐿𝑏𝑈)))) ↔ (𝑎 = (𝑥 +Q0 ([⟨𝑚, 1o⟩] ~Q0 ·Q0 𝑞)) ∧ ((𝑥Q𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃) ∧ (𝑚 ∈ ω ∧ (𝑎𝐿 ∧ (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞)) ∈ 𝑈))))))
6867exbidv 1871 . . . . . . . . . . . . 13 (𝑏 = (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞)) → (∃𝑎(𝑎 = (𝑥 +Q0 ([⟨𝑚, 1o⟩] ~Q0 ·Q0 𝑞)) ∧ ((𝑥Q𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃) ∧ (𝑚 ∈ ω ∧ (𝑎𝐿𝑏𝑈)))) ↔ ∃𝑎(𝑎 = (𝑥 +Q0 ([⟨𝑚, 1o⟩] ~Q0 ·Q0 𝑞)) ∧ ((𝑥Q𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃) ∧ (𝑚 ∈ ω ∧ (𝑎𝐿 ∧ (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞)) ∈ 𝑈))))))
6968ceqsexgv 2932 . . . . . . . . . . . 12 ((𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞)) ∈ 𝑈 → (∃𝑏(𝑏 = (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞)) ∧ ∃𝑎(𝑎 = (𝑥 +Q0 ([⟨𝑚, 1o⟩] ~Q0 ·Q0 𝑞)) ∧ ((𝑥Q𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃) ∧ (𝑚 ∈ ω ∧ (𝑎𝐿𝑏𝑈))))) ↔ ∃𝑎(𝑎 = (𝑥 +Q0 ([⟨𝑚, 1o⟩] ~Q0 ·Q0 𝑞)) ∧ ((𝑥Q𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃) ∧ (𝑚 ∈ ω ∧ (𝑎𝐿 ∧ (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞)) ∈ 𝑈))))))
7069biimprcd 160 . . . . . . . . . . 11 (∃𝑎(𝑎 = (𝑥 +Q0 ([⟨𝑚, 1o⟩] ~Q0 ·Q0 𝑞)) ∧ ((𝑥Q𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃) ∧ (𝑚 ∈ ω ∧ (𝑎𝐿 ∧ (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞)) ∈ 𝑈)))) → ((𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞)) ∈ 𝑈 → ∃𝑏(𝑏 = (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞)) ∧ ∃𝑎(𝑎 = (𝑥 +Q0 ([⟨𝑚, 1o⟩] ~Q0 ·Q0 𝑞)) ∧ ((𝑥Q𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃) ∧ (𝑚 ∈ ω ∧ (𝑎𝐿𝑏𝑈)))))))
7161, 62, 70sylc 62 . . . . . . . . . 10 (((𝑥Q𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃) ∧ (𝑚 ∈ ω ∧ ((𝑥 +Q0 ([⟨𝑚, 1o⟩] ~Q0 ·Q0 𝑞)) ∈ 𝐿 ∧ (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞)) ∈ 𝑈))) → ∃𝑏(𝑏 = (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞)) ∧ ∃𝑎(𝑎 = (𝑥 +Q0 ([⟨𝑚, 1o⟩] ~Q0 ·Q0 𝑞)) ∧ ((𝑥Q𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃) ∧ (𝑚 ∈ ω ∧ (𝑎𝐿𝑏𝑈))))))
72 19.42v 1953 . . . . . . . . . . 11 (∃𝑎(𝑏 = (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞)) ∧ (𝑎 = (𝑥 +Q0 ([⟨𝑚, 1o⟩] ~Q0 ·Q0 𝑞)) ∧ ((𝑥Q𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃) ∧ (𝑚 ∈ ω ∧ (𝑎𝐿𝑏𝑈))))) ↔ (𝑏 = (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞)) ∧ ∃𝑎(𝑎 = (𝑥 +Q0 ([⟨𝑚, 1o⟩] ~Q0 ·Q0 𝑞)) ∧ ((𝑥Q𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃) ∧ (𝑚 ∈ ω ∧ (𝑎𝐿𝑏𝑈))))))
7372exbii 1651 . . . . . . . . . 10 (∃𝑏𝑎(𝑏 = (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞)) ∧ (𝑎 = (𝑥 +Q0 ([⟨𝑚, 1o⟩] ~Q0 ·Q0 𝑞)) ∧ ((𝑥Q𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃) ∧ (𝑚 ∈ ω ∧ (𝑎𝐿𝑏𝑈))))) ↔ ∃𝑏(𝑏 = (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞)) ∧ ∃𝑎(𝑎 = (𝑥 +Q0 ([⟨𝑚, 1o⟩] ~Q0 ·Q0 𝑞)) ∧ ((𝑥Q𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃) ∧ (𝑚 ∈ ω ∧ (𝑎𝐿𝑏𝑈))))))
7471, 73sylibr 134 . . . . . . . . 9 (((𝑥Q𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃) ∧ (𝑚 ∈ ω ∧ ((𝑥 +Q0 ([⟨𝑚, 1o⟩] ~Q0 ·Q0 𝑞)) ∈ 𝐿 ∧ (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞)) ∈ 𝑈))) → ∃𝑏𝑎(𝑏 = (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞)) ∧ (𝑎 = (𝑥 +Q0 ([⟨𝑚, 1o⟩] ~Q0 ·Q0 𝑞)) ∧ ((𝑥Q𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃) ∧ (𝑚 ∈ ω ∧ (𝑎𝐿𝑏𝑈))))))
75 simprrl 539 . . . . . . . . . . . . . 14 (((𝑥Q𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃) ∧ (𝑚 ∈ ω ∧ (𝑎𝐿𝑏𝑈))) → 𝑎𝐿)
7675adantl 277 . . . . . . . . . . . . 13 (((𝑎 = (𝑥 +Q0 ([⟨𝑚, 1o⟩] ~Q0 ·Q0 𝑞)) ∧ 𝑏 = (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞))) ∧ ((𝑥Q𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃) ∧ (𝑚 ∈ ω ∧ (𝑎𝐿𝑏𝑈)))) → 𝑎𝐿)
77 simprrr 540 . . . . . . . . . . . . . . 15 (((𝑥Q𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃) ∧ (𝑚 ∈ ω ∧ (𝑎𝐿𝑏𝑈))) → 𝑏𝑈)
7877adantl 277 . . . . . . . . . . . . . 14 (((𝑎 = (𝑥 +Q0 ([⟨𝑚, 1o⟩] ~Q0 ·Q0 𝑞)) ∧ 𝑏 = (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞))) ∧ ((𝑥Q𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃) ∧ (𝑚 ∈ ω ∧ (𝑎𝐿𝑏𝑈)))) → 𝑏𝑈)
79 simpl 109 . . . . . . . . . . . . . . 15 (((𝑎 = (𝑥 +Q0 ([⟨𝑚, 1o⟩] ~Q0 ·Q0 𝑞)) ∧ 𝑏 = (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞))) ∧ ((𝑥Q𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃) ∧ (𝑚 ∈ ω ∧ (𝑎𝐿𝑏𝑈)))) → (𝑎 = (𝑥 +Q0 ([⟨𝑚, 1o⟩] ~Q0 ·Q0 𝑞)) ∧ 𝑏 = (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞))))
80 simprl2 1067 . . . . . . . . . . . . . . . 16 (((𝑎 = (𝑥 +Q0 ([⟨𝑚, 1o⟩] ~Q0 ·Q0 𝑞)) ∧ 𝑏 = (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞))) ∧ ((𝑥Q𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃) ∧ (𝑚 ∈ ω ∧ (𝑎𝐿𝑏𝑈)))) → 𝑞Q)
81 simprl3 1068 . . . . . . . . . . . . . . . 16 (((𝑎 = (𝑥 +Q0 ([⟨𝑚, 1o⟩] ~Q0 ·Q0 𝑞)) ∧ 𝑏 = (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞))) ∧ ((𝑥Q𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃) ∧ (𝑚 ∈ ω ∧ (𝑎𝐿𝑏𝑈)))) → (𝑞 +Q 𝑞) <Q 𝑃)
8280, 81jca 306 . . . . . . . . . . . . . . 15 (((𝑎 = (𝑥 +Q0 ([⟨𝑚, 1o⟩] ~Q0 ·Q0 𝑞)) ∧ 𝑏 = (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞))) ∧ ((𝑥Q𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃) ∧ (𝑚 ∈ ω ∧ (𝑎𝐿𝑏𝑈)))) → (𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃))
83 simprl1 1066 . . . . . . . . . . . . . . . 16 (((𝑎 = (𝑥 +Q0 ([⟨𝑚, 1o⟩] ~Q0 ·Q0 𝑞)) ∧ 𝑏 = (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞))) ∧ ((𝑥Q𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃) ∧ (𝑚 ∈ ω ∧ (𝑎𝐿𝑏𝑈)))) → 𝑥Q)
84 simprrl 539 . . . . . . . . . . . . . . . 16 (((𝑎 = (𝑥 +Q0 ([⟨𝑚, 1o⟩] ~Q0 ·Q0 𝑞)) ∧ 𝑏 = (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞))) ∧ ((𝑥Q𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃) ∧ (𝑚 ∈ ω ∧ (𝑎𝐿𝑏𝑈)))) → 𝑚 ∈ ω)
8583, 84jca 306 . . . . . . . . . . . . . . 15 (((𝑎 = (𝑥 +Q0 ([⟨𝑚, 1o⟩] ~Q0 ·Q0 𝑞)) ∧ 𝑏 = (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞))) ∧ ((𝑥Q𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃) ∧ (𝑚 ∈ ω ∧ (𝑎𝐿𝑏𝑈)))) → (𝑥Q𝑚 ∈ ω))
86 prarloclemcalc 7685 . . . . . . . . . . . . . . 15 (((𝑎 = (𝑥 +Q0 ([⟨𝑚, 1o⟩] ~Q0 ·Q0 𝑞)) ∧ 𝑏 = (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞))) ∧ ((𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃) ∧ (𝑥Q𝑚 ∈ ω))) → 𝑏 <Q (𝑎 +Q 𝑃))
8779, 82, 85, 86syl12anc 1269 . . . . . . . . . . . . . 14 (((𝑎 = (𝑥 +Q0 ([⟨𝑚, 1o⟩] ~Q0 ·Q0 𝑞)) ∧ 𝑏 = (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞))) ∧ ((𝑥Q𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃) ∧ (𝑚 ∈ ω ∧ (𝑎𝐿𝑏𝑈)))) → 𝑏 <Q (𝑎 +Q 𝑃))
8878, 87jca 306 . . . . . . . . . . . . 13 (((𝑎 = (𝑥 +Q0 ([⟨𝑚, 1o⟩] ~Q0 ·Q0 𝑞)) ∧ 𝑏 = (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞))) ∧ ((𝑥Q𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃) ∧ (𝑚 ∈ ω ∧ (𝑎𝐿𝑏𝑈)))) → (𝑏𝑈𝑏 <Q (𝑎 +Q 𝑃)))
8976, 88jca 306 . . . . . . . . . . . 12 (((𝑎 = (𝑥 +Q0 ([⟨𝑚, 1o⟩] ~Q0 ·Q0 𝑞)) ∧ 𝑏 = (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞))) ∧ ((𝑥Q𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃) ∧ (𝑚 ∈ ω ∧ (𝑎𝐿𝑏𝑈)))) → (𝑎𝐿 ∧ (𝑏𝑈𝑏 <Q (𝑎 +Q 𝑃))))
9089ancom1s 569 . . . . . . . . . . 11 (((𝑏 = (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞)) ∧ 𝑎 = (𝑥 +Q0 ([⟨𝑚, 1o⟩] ~Q0 ·Q0 𝑞))) ∧ ((𝑥Q𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃) ∧ (𝑚 ∈ ω ∧ (𝑎𝐿𝑏𝑈)))) → (𝑎𝐿 ∧ (𝑏𝑈𝑏 <Q (𝑎 +Q 𝑃))))
9190anasss 399 . . . . . . . . . 10 ((𝑏 = (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞)) ∧ (𝑎 = (𝑥 +Q0 ([⟨𝑚, 1o⟩] ~Q0 ·Q0 𝑞)) ∧ ((𝑥Q𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃) ∧ (𝑚 ∈ ω ∧ (𝑎𝐿𝑏𝑈))))) → (𝑎𝐿 ∧ (𝑏𝑈𝑏 <Q (𝑎 +Q 𝑃))))
92912eximi 1647 . . . . . . . . 9 (∃𝑏𝑎(𝑏 = (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞)) ∧ (𝑎 = (𝑥 +Q0 ([⟨𝑚, 1o⟩] ~Q0 ·Q0 𝑞)) ∧ ((𝑥Q𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃) ∧ (𝑚 ∈ ω ∧ (𝑎𝐿𝑏𝑈))))) → ∃𝑏𝑎(𝑎𝐿 ∧ (𝑏𝑈𝑏 <Q (𝑎 +Q 𝑃))))
9374, 92syl 14 . . . . . . . 8 (((𝑥Q𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃) ∧ (𝑚 ∈ ω ∧ ((𝑥 +Q0 ([⟨𝑚, 1o⟩] ~Q0 ·Q0 𝑞)) ∈ 𝐿 ∧ (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞)) ∈ 𝑈))) → ∃𝑏𝑎(𝑎𝐿 ∧ (𝑏𝑈𝑏 <Q (𝑎 +Q 𝑃))))
9493exlimiv 1644 . . . . . . 7 (∃𝑚((𝑥Q𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃) ∧ (𝑚 ∈ ω ∧ ((𝑥 +Q0 ([⟨𝑚, 1o⟩] ~Q0 ·Q0 𝑞)) ∈ 𝐿 ∧ (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞)) ∈ 𝑈))) → ∃𝑏𝑎(𝑎𝐿 ∧ (𝑏𝑈𝑏 <Q (𝑎 +Q 𝑃))))
9553, 94syl 14 . . . . . 6 ((((𝑥Q𝑥𝐿) ∧ (𝑦Q𝑦𝑈) ∧ ((⟨𝐿, 𝑈⟩ ∈ P𝑃Q) ∧ (𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃))) ∧ (𝑛N ∧ (1o <N 𝑛𝑦 <Q (𝑥 +Q ([⟨𝑛, 1o⟩] ~Q ·Q 𝑞))))) → ∃𝑏𝑎(𝑎𝐿 ∧ (𝑏𝑈𝑏 <Q (𝑎 +Q 𝑃))))
9695exlimivv 1943 . . . . 5 (∃𝑞𝑛(((𝑥Q𝑥𝐿) ∧ (𝑦Q𝑦𝑈) ∧ ((⟨𝐿, 𝑈⟩ ∈ P𝑃Q) ∧ (𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃))) ∧ (𝑛N ∧ (1o <N 𝑛𝑦 <Q (𝑥 +Q ([⟨𝑛, 1o⟩] ~Q ·Q 𝑞))))) → ∃𝑏𝑎(𝑎𝐿 ∧ (𝑏𝑈𝑏 <Q (𝑎 +Q 𝑃))))
9796exlimivv 1943 . . . 4 (∃𝑥𝑦𝑞𝑛(((𝑥Q𝑥𝐿) ∧ (𝑦Q𝑦𝑈) ∧ ((⟨𝐿, 𝑈⟩ ∈ P𝑃Q) ∧ (𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃))) ∧ (𝑛N ∧ (1o <N 𝑛𝑦 <Q (𝑥 +Q ([⟨𝑛, 1o⟩] ~Q ·Q 𝑞))))) → ∃𝑏𝑎(𝑎𝐿 ∧ (𝑏𝑈𝑏 <Q (𝑎 +Q 𝑃))))
9817, 30, 973syl 17 . . 3 ((⟨𝐿, 𝑈⟩ ∈ P𝑃Q) → ∃𝑏𝑎(𝑎𝐿 ∧ (𝑏𝑈𝑏 <Q (𝑎 +Q 𝑃))))
99 excom 1710 . . 3 (∃𝑏𝑎(𝑎𝐿 ∧ (𝑏𝑈𝑏 <Q (𝑎 +Q 𝑃))) ↔ ∃𝑎𝑏(𝑎𝐿 ∧ (𝑏𝑈𝑏 <Q (𝑎 +Q 𝑃))))
10098, 99sylib 122 . 2 ((⟨𝐿, 𝑈⟩ ∈ P𝑃Q) → ∃𝑎𝑏(𝑎𝐿 ∧ (𝑏𝑈𝑏 <Q (𝑎 +Q 𝑃))))
101 19.42v 1953 . . . . 5 (∃𝑏(𝑎𝐿 ∧ (𝑏𝑈𝑏 <Q (𝑎 +Q 𝑃))) ↔ (𝑎𝐿 ∧ ∃𝑏(𝑏𝑈𝑏 <Q (𝑎 +Q 𝑃))))
102 df-rex 2514 . . . . . 6 (∃𝑏𝑈 𝑏 <Q (𝑎 +Q 𝑃) ↔ ∃𝑏(𝑏𝑈𝑏 <Q (𝑎 +Q 𝑃)))
103102anbi2i 457 . . . . 5 ((𝑎𝐿 ∧ ∃𝑏𝑈 𝑏 <Q (𝑎 +Q 𝑃)) ↔ (𝑎𝐿 ∧ ∃𝑏(𝑏𝑈𝑏 <Q (𝑎 +Q 𝑃))))
104101, 103bitr4i 187 . . . 4 (∃𝑏(𝑎𝐿 ∧ (𝑏𝑈𝑏 <Q (𝑎 +Q 𝑃))) ↔ (𝑎𝐿 ∧ ∃𝑏𝑈 𝑏 <Q (𝑎 +Q 𝑃)))
105104exbii 1651 . . 3 (∃𝑎𝑏(𝑎𝐿 ∧ (𝑏𝑈𝑏 <Q (𝑎 +Q 𝑃))) ↔ ∃𝑎(𝑎𝐿 ∧ ∃𝑏𝑈 𝑏 <Q (𝑎 +Q 𝑃)))
106 df-rex 2514 . . 3 (∃𝑎𝐿𝑏𝑈 𝑏 <Q (𝑎 +Q 𝑃) ↔ ∃𝑎(𝑎𝐿 ∧ ∃𝑏𝑈 𝑏 <Q (𝑎 +Q 𝑃)))
107105, 106bitr4i 187 . 2 (∃𝑎𝑏(𝑎𝐿 ∧ (𝑏𝑈𝑏 <Q (𝑎 +Q 𝑃))) ↔ ∃𝑎𝐿𝑏𝑈 𝑏 <Q (𝑎 +Q 𝑃))
108100, 107sylib 122 1 ((⟨𝐿, 𝑈⟩ ∈ P𝑃Q) → ∃𝑎𝐿𝑏𝑈 𝑏 <Q (𝑎 +Q 𝑃))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 1002   = wceq 1395  wex 1538  wcel 2200  wrex 2509  cop 3669   class class class wbr 4082  ωcom 4681  (class class class)co 6000  1oc1o 6553  2oc2o 6554   +o coa 6557  [cec 6676  Ncnpi 7455   <N clti 7458   ~Q ceq 7462  Qcnq 7463   +Q cplq 7465   ·Q cmq 7466   <Q cltq 7468   ~Q0 ceq0 7469   +Q0 cplq0 7472   ·Q0 cmq0 7473  Pcnp 7474
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-iinf 4679
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-eprel 4379  df-id 4383  df-po 4386  df-iso 4387  df-iord 4456  df-on 4458  df-suc 4461  df-iom 4682  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-recs 6449  df-irdg 6514  df-1o 6560  df-2o 6561  df-oadd 6564  df-omul 6565  df-er 6678  df-ec 6680  df-qs 6684  df-ni 7487  df-pli 7488  df-mi 7489  df-lti 7490  df-plpq 7527  df-mpq 7528  df-enq 7530  df-nqqs 7531  df-plqqs 7532  df-mqqs 7533  df-1nqqs 7534  df-rq 7535  df-ltnqqs 7536  df-enq0 7607  df-nq0 7608  df-0nq0 7609  df-plq0 7610  df-mq0 7611  df-inp 7649
This theorem is referenced by:  prarloc2  7687  addlocpr  7719  prmuloc  7749  ltaddpr  7780  ltexprlemloc  7790  ltexprlemrl  7793  ltexprlemru  7795
  Copyright terms: Public domain W3C validator