ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prarloc GIF version

Theorem prarloc 7615
Description: A Dedekind cut is arithmetically located. Part of Proposition 11.15 of [BauerTaylor], p. 52, slightly modified. It states that given a tolerance 𝑃, there are elements of the lower and upper cut which are within that tolerance of each other.

Usually, proofs will be shorter if they use prarloc2 7616 instead. (Contributed by Jim Kingdon, 22-Oct-2019.)

Assertion
Ref Expression
prarloc ((⟨𝐿, 𝑈⟩ ∈ P𝑃Q) → ∃𝑎𝐿𝑏𝑈 𝑏 <Q (𝑎 +Q 𝑃))
Distinct variable groups:   𝐿,𝑎,𝑏   𝑃,𝑎,𝑏   𝑈,𝑎,𝑏

Proof of Theorem prarloc
Dummy variables 𝑚 𝑛 𝑞 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prml 7589 . . . . . . 7 (⟨𝐿, 𝑈⟩ ∈ P → ∃𝑥Q 𝑥𝐿)
2 df-rex 2489 . . . . . . 7 (∃𝑥Q 𝑥𝐿 ↔ ∃𝑥(𝑥Q𝑥𝐿))
31, 2sylib 122 . . . . . 6 (⟨𝐿, 𝑈⟩ ∈ P → ∃𝑥(𝑥Q𝑥𝐿))
43adantr 276 . . . . 5 ((⟨𝐿, 𝑈⟩ ∈ P𝑃Q) → ∃𝑥(𝑥Q𝑥𝐿))
5 prmu 7590 . . . . . . 7 (⟨𝐿, 𝑈⟩ ∈ P → ∃𝑦Q 𝑦𝑈)
6 df-rex 2489 . . . . . . 7 (∃𝑦Q 𝑦𝑈 ↔ ∃𝑦(𝑦Q𝑦𝑈))
75, 6sylib 122 . . . . . 6 (⟨𝐿, 𝑈⟩ ∈ P → ∃𝑦(𝑦Q𝑦𝑈))
87adantr 276 . . . . 5 ((⟨𝐿, 𝑈⟩ ∈ P𝑃Q) → ∃𝑦(𝑦Q𝑦𝑈))
9 subhalfnqq 7526 . . . . . . . . 9 (𝑃Q → ∃𝑞Q (𝑞 +Q 𝑞) <Q 𝑃)
109adantl 277 . . . . . . . 8 ((⟨𝐿, 𝑈⟩ ∈ P𝑃Q) → ∃𝑞Q (𝑞 +Q 𝑞) <Q 𝑃)
11 df-rex 2489 . . . . . . . 8 (∃𝑞Q (𝑞 +Q 𝑞) <Q 𝑃 ↔ ∃𝑞(𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃))
1210, 11sylib 122 . . . . . . 7 ((⟨𝐿, 𝑈⟩ ∈ P𝑃Q) → ∃𝑞(𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃))
1312ancli 323 . . . . . 6 ((⟨𝐿, 𝑈⟩ ∈ P𝑃Q) → ((⟨𝐿, 𝑈⟩ ∈ P𝑃Q) ∧ ∃𝑞(𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃)))
14 19.42v 1929 . . . . . 6 (∃𝑞((⟨𝐿, 𝑈⟩ ∈ P𝑃Q) ∧ (𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃)) ↔ ((⟨𝐿, 𝑈⟩ ∈ P𝑃Q) ∧ ∃𝑞(𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃)))
1513, 14sylibr 134 . . . . 5 ((⟨𝐿, 𝑈⟩ ∈ P𝑃Q) → ∃𝑞((⟨𝐿, 𝑈⟩ ∈ P𝑃Q) ∧ (𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃)))
16 eeeanv 1960 . . . . 5 (∃𝑥𝑦𝑞((𝑥Q𝑥𝐿) ∧ (𝑦Q𝑦𝑈) ∧ ((⟨𝐿, 𝑈⟩ ∈ P𝑃Q) ∧ (𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃))) ↔ (∃𝑥(𝑥Q𝑥𝐿) ∧ ∃𝑦(𝑦Q𝑦𝑈) ∧ ∃𝑞((⟨𝐿, 𝑈⟩ ∈ P𝑃Q) ∧ (𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃))))
174, 8, 15, 16syl3anbrc 1183 . . . 4 ((⟨𝐿, 𝑈⟩ ∈ P𝑃Q) → ∃𝑥𝑦𝑞((𝑥Q𝑥𝐿) ∧ (𝑦Q𝑦𝑈) ∧ ((⟨𝐿, 𝑈⟩ ∈ P𝑃Q) ∧ (𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃))))
18 prarloclemarch2 7531 . . . . . . . . . . . . . 14 ((𝑦Q𝑥Q𝑞Q) → ∃𝑛N (1o <N 𝑛𝑦 <Q (𝑥 +Q ([⟨𝑛, 1o⟩] ~Q ·Q 𝑞))))
19 df-rex 2489 . . . . . . . . . . . . . 14 (∃𝑛N (1o <N 𝑛𝑦 <Q (𝑥 +Q ([⟨𝑛, 1o⟩] ~Q ·Q 𝑞))) ↔ ∃𝑛(𝑛N ∧ (1o <N 𝑛𝑦 <Q (𝑥 +Q ([⟨𝑛, 1o⟩] ~Q ·Q 𝑞)))))
2018, 19sylib 122 . . . . . . . . . . . . 13 ((𝑦Q𝑥Q𝑞Q) → ∃𝑛(𝑛N ∧ (1o <N 𝑛𝑦 <Q (𝑥 +Q ([⟨𝑛, 1o⟩] ~Q ·Q 𝑞)))))
21203com12 1209 . . . . . . . . . . . 12 ((𝑥Q𝑦Q𝑞Q) → ∃𝑛(𝑛N ∧ (1o <N 𝑛𝑦 <Q (𝑥 +Q ([⟨𝑛, 1o⟩] ~Q ·Q 𝑞)))))
22213adant1r 1233 . . . . . . . . . . 11 (((𝑥Q𝑥𝐿) ∧ 𝑦Q𝑞Q) → ∃𝑛(𝑛N ∧ (1o <N 𝑛𝑦 <Q (𝑥 +Q ([⟨𝑛, 1o⟩] ~Q ·Q 𝑞)))))
23223adant2r 1235 . . . . . . . . . 10 (((𝑥Q𝑥𝐿) ∧ (𝑦Q𝑦𝑈) ∧ 𝑞Q) → ∃𝑛(𝑛N ∧ (1o <N 𝑛𝑦 <Q (𝑥 +Q ([⟨𝑛, 1o⟩] ~Q ·Q 𝑞)))))
24233adant3r 1237 . . . . . . . . 9 (((𝑥Q𝑥𝐿) ∧ (𝑦Q𝑦𝑈) ∧ (𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃)) → ∃𝑛(𝑛N ∧ (1o <N 𝑛𝑦 <Q (𝑥 +Q ([⟨𝑛, 1o⟩] ~Q ·Q 𝑞)))))
25243adant3l 1236 . . . . . . . 8 (((𝑥Q𝑥𝐿) ∧ (𝑦Q𝑦𝑈) ∧ ((⟨𝐿, 𝑈⟩ ∈ P𝑃Q) ∧ (𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃))) → ∃𝑛(𝑛N ∧ (1o <N 𝑛𝑦 <Q (𝑥 +Q ([⟨𝑛, 1o⟩] ~Q ·Q 𝑞)))))
2625ancli 323 . . . . . . 7 (((𝑥Q𝑥𝐿) ∧ (𝑦Q𝑦𝑈) ∧ ((⟨𝐿, 𝑈⟩ ∈ P𝑃Q) ∧ (𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃))) → (((𝑥Q𝑥𝐿) ∧ (𝑦Q𝑦𝑈) ∧ ((⟨𝐿, 𝑈⟩ ∈ P𝑃Q) ∧ (𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃))) ∧ ∃𝑛(𝑛N ∧ (1o <N 𝑛𝑦 <Q (𝑥 +Q ([⟨𝑛, 1o⟩] ~Q ·Q 𝑞))))))
27 19.42v 1929 . . . . . . 7 (∃𝑛(((𝑥Q𝑥𝐿) ∧ (𝑦Q𝑦𝑈) ∧ ((⟨𝐿, 𝑈⟩ ∈ P𝑃Q) ∧ (𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃))) ∧ (𝑛N ∧ (1o <N 𝑛𝑦 <Q (𝑥 +Q ([⟨𝑛, 1o⟩] ~Q ·Q 𝑞))))) ↔ (((𝑥Q𝑥𝐿) ∧ (𝑦Q𝑦𝑈) ∧ ((⟨𝐿, 𝑈⟩ ∈ P𝑃Q) ∧ (𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃))) ∧ ∃𝑛(𝑛N ∧ (1o <N 𝑛𝑦 <Q (𝑥 +Q ([⟨𝑛, 1o⟩] ~Q ·Q 𝑞))))))
2826, 27sylibr 134 . . . . . 6 (((𝑥Q𝑥𝐿) ∧ (𝑦Q𝑦𝑈) ∧ ((⟨𝐿, 𝑈⟩ ∈ P𝑃Q) ∧ (𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃))) → ∃𝑛(((𝑥Q𝑥𝐿) ∧ (𝑦Q𝑦𝑈) ∧ ((⟨𝐿, 𝑈⟩ ∈ P𝑃Q) ∧ (𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃))) ∧ (𝑛N ∧ (1o <N 𝑛𝑦 <Q (𝑥 +Q ([⟨𝑛, 1o⟩] ~Q ·Q 𝑞))))))
29282eximi 1623 . . . . 5 (∃𝑦𝑞((𝑥Q𝑥𝐿) ∧ (𝑦Q𝑦𝑈) ∧ ((⟨𝐿, 𝑈⟩ ∈ P𝑃Q) ∧ (𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃))) → ∃𝑦𝑞𝑛(((𝑥Q𝑥𝐿) ∧ (𝑦Q𝑦𝑈) ∧ ((⟨𝐿, 𝑈⟩ ∈ P𝑃Q) ∧ (𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃))) ∧ (𝑛N ∧ (1o <N 𝑛𝑦 <Q (𝑥 +Q ([⟨𝑛, 1o⟩] ~Q ·Q 𝑞))))))
3029eximi 1622 . . . 4 (∃𝑥𝑦𝑞((𝑥Q𝑥𝐿) ∧ (𝑦Q𝑦𝑈) ∧ ((⟨𝐿, 𝑈⟩ ∈ P𝑃Q) ∧ (𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃))) → ∃𝑥𝑦𝑞𝑛(((𝑥Q𝑥𝐿) ∧ (𝑦Q𝑦𝑈) ∧ ((⟨𝐿, 𝑈⟩ ∈ P𝑃Q) ∧ (𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃))) ∧ (𝑛N ∧ (1o <N 𝑛𝑦 <Q (𝑥 +Q ([⟨𝑛, 1o⟩] ~Q ·Q 𝑞))))))
31 simpl1l 1050 . . . . . . . . . 10 ((((𝑥Q𝑥𝐿) ∧ (𝑦Q𝑦𝑈) ∧ ((⟨𝐿, 𝑈⟩ ∈ P𝑃Q) ∧ (𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃))) ∧ (𝑛N ∧ (1o <N 𝑛𝑦 <Q (𝑥 +Q ([⟨𝑛, 1o⟩] ~Q ·Q 𝑞))))) → 𝑥Q)
32 simp3rl 1072 . . . . . . . . . . 11 (((𝑥Q𝑥𝐿) ∧ (𝑦Q𝑦𝑈) ∧ ((⟨𝐿, 𝑈⟩ ∈ P𝑃Q) ∧ (𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃))) → 𝑞Q)
3332adantr 276 . . . . . . . . . 10 ((((𝑥Q𝑥𝐿) ∧ (𝑦Q𝑦𝑈) ∧ ((⟨𝐿, 𝑈⟩ ∈ P𝑃Q) ∧ (𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃))) ∧ (𝑛N ∧ (1o <N 𝑛𝑦 <Q (𝑥 +Q ([⟨𝑛, 1o⟩] ~Q ·Q 𝑞))))) → 𝑞Q)
34 simp3rr 1073 . . . . . . . . . . 11 (((𝑥Q𝑥𝐿) ∧ (𝑦Q𝑦𝑈) ∧ ((⟨𝐿, 𝑈⟩ ∈ P𝑃Q) ∧ (𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃))) → (𝑞 +Q 𝑞) <Q 𝑃)
3534adantr 276 . . . . . . . . . 10 ((((𝑥Q𝑥𝐿) ∧ (𝑦Q𝑦𝑈) ∧ ((⟨𝐿, 𝑈⟩ ∈ P𝑃Q) ∧ (𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃))) ∧ (𝑛N ∧ (1o <N 𝑛𝑦 <Q (𝑥 +Q ([⟨𝑛, 1o⟩] ~Q ·Q 𝑞))))) → (𝑞 +Q 𝑞) <Q 𝑃)
3631, 33, 353jca 1179 . . . . . . . . 9 ((((𝑥Q𝑥𝐿) ∧ (𝑦Q𝑦𝑈) ∧ ((⟨𝐿, 𝑈⟩ ∈ P𝑃Q) ∧ (𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃))) ∧ (𝑛N ∧ (1o <N 𝑛𝑦 <Q (𝑥 +Q ([⟨𝑛, 1o⟩] ~Q ·Q 𝑞))))) → (𝑥Q𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃))
37 simp3ll 1070 . . . . . . . . . . . 12 (((𝑥Q𝑥𝐿) ∧ (𝑦Q𝑦𝑈) ∧ ((⟨𝐿, 𝑈⟩ ∈ P𝑃Q) ∧ (𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃))) → ⟨𝐿, 𝑈⟩ ∈ P)
3837adantr 276 . . . . . . . . . . 11 ((((𝑥Q𝑥𝐿) ∧ (𝑦Q𝑦𝑈) ∧ ((⟨𝐿, 𝑈⟩ ∈ P𝑃Q) ∧ (𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃))) ∧ (𝑛N ∧ (1o <N 𝑛𝑦 <Q (𝑥 +Q ([⟨𝑛, 1o⟩] ~Q ·Q 𝑞))))) → ⟨𝐿, 𝑈⟩ ∈ P)
39 simpl1r 1051 . . . . . . . . . . 11 ((((𝑥Q𝑥𝐿) ∧ (𝑦Q𝑦𝑈) ∧ ((⟨𝐿, 𝑈⟩ ∈ P𝑃Q) ∧ (𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃))) ∧ (𝑛N ∧ (1o <N 𝑛𝑦 <Q (𝑥 +Q ([⟨𝑛, 1o⟩] ~Q ·Q 𝑞))))) → 𝑥𝐿)
40 simprl 529 . . . . . . . . . . 11 ((((𝑥Q𝑥𝐿) ∧ (𝑦Q𝑦𝑈) ∧ ((⟨𝐿, 𝑈⟩ ∈ P𝑃Q) ∧ (𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃))) ∧ (𝑛N ∧ (1o <N 𝑛𝑦 <Q (𝑥 +Q ([⟨𝑛, 1o⟩] ~Q ·Q 𝑞))))) → 𝑛N)
41 simprrl 539 . . . . . . . . . . 11 ((((𝑥Q𝑥𝐿) ∧ (𝑦Q𝑦𝑈) ∧ ((⟨𝐿, 𝑈⟩ ∈ P𝑃Q) ∧ (𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃))) ∧ (𝑛N ∧ (1o <N 𝑛𝑦 <Q (𝑥 +Q ([⟨𝑛, 1o⟩] ~Q ·Q 𝑞))))) → 1o <N 𝑛)
42 simprrr 540 . . . . . . . . . . . 12 ((((𝑥Q𝑥𝐿) ∧ (𝑦Q𝑦𝑈) ∧ ((⟨𝐿, 𝑈⟩ ∈ P𝑃Q) ∧ (𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃))) ∧ (𝑛N ∧ (1o <N 𝑛𝑦 <Q (𝑥 +Q ([⟨𝑛, 1o⟩] ~Q ·Q 𝑞))))) → 𝑦 <Q (𝑥 +Q ([⟨𝑛, 1o⟩] ~Q ·Q 𝑞)))
43 simpl2r 1053 . . . . . . . . . . . . 13 ((((𝑥Q𝑥𝐿) ∧ (𝑦Q𝑦𝑈) ∧ ((⟨𝐿, 𝑈⟩ ∈ P𝑃Q) ∧ (𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃))) ∧ (𝑛N ∧ (1o <N 𝑛𝑦 <Q (𝑥 +Q ([⟨𝑛, 1o⟩] ~Q ·Q 𝑞))))) → 𝑦𝑈)
44 prcunqu 7597 . . . . . . . . . . . . 13 ((⟨𝐿, 𝑈⟩ ∈ P𝑦𝑈) → (𝑦 <Q (𝑥 +Q ([⟨𝑛, 1o⟩] ~Q ·Q 𝑞)) → (𝑥 +Q ([⟨𝑛, 1o⟩] ~Q ·Q 𝑞)) ∈ 𝑈))
4538, 43, 44syl2anc 411 . . . . . . . . . . . 12 ((((𝑥Q𝑥𝐿) ∧ (𝑦Q𝑦𝑈) ∧ ((⟨𝐿, 𝑈⟩ ∈ P𝑃Q) ∧ (𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃))) ∧ (𝑛N ∧ (1o <N 𝑛𝑦 <Q (𝑥 +Q ([⟨𝑛, 1o⟩] ~Q ·Q 𝑞))))) → (𝑦 <Q (𝑥 +Q ([⟨𝑛, 1o⟩] ~Q ·Q 𝑞)) → (𝑥 +Q ([⟨𝑛, 1o⟩] ~Q ·Q 𝑞)) ∈ 𝑈))
4642, 45mpd 13 . . . . . . . . . . 11 ((((𝑥Q𝑥𝐿) ∧ (𝑦Q𝑦𝑈) ∧ ((⟨𝐿, 𝑈⟩ ∈ P𝑃Q) ∧ (𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃))) ∧ (𝑛N ∧ (1o <N 𝑛𝑦 <Q (𝑥 +Q ([⟨𝑛, 1o⟩] ~Q ·Q 𝑞))))) → (𝑥 +Q ([⟨𝑛, 1o⟩] ~Q ·Q 𝑞)) ∈ 𝑈)
47 prarloclem 7613 . . . . . . . . . . 11 (((⟨𝐿, 𝑈⟩ ∈ P𝑥𝐿) ∧ (𝑛N𝑞Q ∧ 1o <N 𝑛) ∧ (𝑥 +Q ([⟨𝑛, 1o⟩] ~Q ·Q 𝑞)) ∈ 𝑈) → ∃𝑚 ∈ ω ((𝑥 +Q0 ([⟨𝑚, 1o⟩] ~Q0 ·Q0 𝑞)) ∈ 𝐿 ∧ (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞)) ∈ 𝑈))
4838, 39, 40, 33, 41, 46, 47syl231anc 1269 . . . . . . . . . 10 ((((𝑥Q𝑥𝐿) ∧ (𝑦Q𝑦𝑈) ∧ ((⟨𝐿, 𝑈⟩ ∈ P𝑃Q) ∧ (𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃))) ∧ (𝑛N ∧ (1o <N 𝑛𝑦 <Q (𝑥 +Q ([⟨𝑛, 1o⟩] ~Q ·Q 𝑞))))) → ∃𝑚 ∈ ω ((𝑥 +Q0 ([⟨𝑚, 1o⟩] ~Q0 ·Q0 𝑞)) ∈ 𝐿 ∧ (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞)) ∈ 𝑈))
49 df-rex 2489 . . . . . . . . . 10 (∃𝑚 ∈ ω ((𝑥 +Q0 ([⟨𝑚, 1o⟩] ~Q0 ·Q0 𝑞)) ∈ 𝐿 ∧ (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞)) ∈ 𝑈) ↔ ∃𝑚(𝑚 ∈ ω ∧ ((𝑥 +Q0 ([⟨𝑚, 1o⟩] ~Q0 ·Q0 𝑞)) ∈ 𝐿 ∧ (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞)) ∈ 𝑈)))
5048, 49sylib 122 . . . . . . . . 9 ((((𝑥Q𝑥𝐿) ∧ (𝑦Q𝑦𝑈) ∧ ((⟨𝐿, 𝑈⟩ ∈ P𝑃Q) ∧ (𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃))) ∧ (𝑛N ∧ (1o <N 𝑛𝑦 <Q (𝑥 +Q ([⟨𝑛, 1o⟩] ~Q ·Q 𝑞))))) → ∃𝑚(𝑚 ∈ ω ∧ ((𝑥 +Q0 ([⟨𝑚, 1o⟩] ~Q0 ·Q0 𝑞)) ∈ 𝐿 ∧ (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞)) ∈ 𝑈)))
5136, 50jca 306 . . . . . . . 8 ((((𝑥Q𝑥𝐿) ∧ (𝑦Q𝑦𝑈) ∧ ((⟨𝐿, 𝑈⟩ ∈ P𝑃Q) ∧ (𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃))) ∧ (𝑛N ∧ (1o <N 𝑛𝑦 <Q (𝑥 +Q ([⟨𝑛, 1o⟩] ~Q ·Q 𝑞))))) → ((𝑥Q𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃) ∧ ∃𝑚(𝑚 ∈ ω ∧ ((𝑥 +Q0 ([⟨𝑚, 1o⟩] ~Q0 ·Q0 𝑞)) ∈ 𝐿 ∧ (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞)) ∈ 𝑈))))
52 19.42v 1929 . . . . . . . 8 (∃𝑚((𝑥Q𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃) ∧ (𝑚 ∈ ω ∧ ((𝑥 +Q0 ([⟨𝑚, 1o⟩] ~Q0 ·Q0 𝑞)) ∈ 𝐿 ∧ (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞)) ∈ 𝑈))) ↔ ((𝑥Q𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃) ∧ ∃𝑚(𝑚 ∈ ω ∧ ((𝑥 +Q0 ([⟨𝑚, 1o⟩] ~Q0 ·Q0 𝑞)) ∈ 𝐿 ∧ (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞)) ∈ 𝑈))))
5351, 52sylibr 134 . . . . . . 7 ((((𝑥Q𝑥𝐿) ∧ (𝑦Q𝑦𝑈) ∧ ((⟨𝐿, 𝑈⟩ ∈ P𝑃Q) ∧ (𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃))) ∧ (𝑛N ∧ (1o <N 𝑛𝑦 <Q (𝑥 +Q ([⟨𝑛, 1o⟩] ~Q ·Q 𝑞))))) → ∃𝑚((𝑥Q𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃) ∧ (𝑚 ∈ ω ∧ ((𝑥 +Q0 ([⟨𝑚, 1o⟩] ~Q0 ·Q0 𝑞)) ∈ 𝐿 ∧ (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞)) ∈ 𝑈))))
54 simprrl 539 . . . . . . . . . . . 12 (((𝑥Q𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃) ∧ (𝑚 ∈ ω ∧ ((𝑥 +Q0 ([⟨𝑚, 1o⟩] ~Q0 ·Q0 𝑞)) ∈ 𝐿 ∧ (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞)) ∈ 𝑈))) → (𝑥 +Q0 ([⟨𝑚, 1o⟩] ~Q0 ·Q0 𝑞)) ∈ 𝐿)
55 eleq1 2267 . . . . . . . . . . . . . . . . 17 (𝑎 = (𝑥 +Q0 ([⟨𝑚, 1o⟩] ~Q0 ·Q0 𝑞)) → (𝑎𝐿 ↔ (𝑥 +Q0 ([⟨𝑚, 1o⟩] ~Q0 ·Q0 𝑞)) ∈ 𝐿))
5655anbi1d 465 . . . . . . . . . . . . . . . 16 (𝑎 = (𝑥 +Q0 ([⟨𝑚, 1o⟩] ~Q0 ·Q0 𝑞)) → ((𝑎𝐿 ∧ (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞)) ∈ 𝑈) ↔ ((𝑥 +Q0 ([⟨𝑚, 1o⟩] ~Q0 ·Q0 𝑞)) ∈ 𝐿 ∧ (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞)) ∈ 𝑈)))
5756anbi2d 464 . . . . . . . . . . . . . . 15 (𝑎 = (𝑥 +Q0 ([⟨𝑚, 1o⟩] ~Q0 ·Q0 𝑞)) → ((𝑚 ∈ ω ∧ (𝑎𝐿 ∧ (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞)) ∈ 𝑈)) ↔ (𝑚 ∈ ω ∧ ((𝑥 +Q0 ([⟨𝑚, 1o⟩] ~Q0 ·Q0 𝑞)) ∈ 𝐿 ∧ (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞)) ∈ 𝑈))))
5857anbi2d 464 . . . . . . . . . . . . . 14 (𝑎 = (𝑥 +Q0 ([⟨𝑚, 1o⟩] ~Q0 ·Q0 𝑞)) → (((𝑥Q𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃) ∧ (𝑚 ∈ ω ∧ (𝑎𝐿 ∧ (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞)) ∈ 𝑈))) ↔ ((𝑥Q𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃) ∧ (𝑚 ∈ ω ∧ ((𝑥 +Q0 ([⟨𝑚, 1o⟩] ~Q0 ·Q0 𝑞)) ∈ 𝐿 ∧ (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞)) ∈ 𝑈)))))
5958ceqsexgv 2901 . . . . . . . . . . . . 13 ((𝑥 +Q0 ([⟨𝑚, 1o⟩] ~Q0 ·Q0 𝑞)) ∈ 𝐿 → (∃𝑎(𝑎 = (𝑥 +Q0 ([⟨𝑚, 1o⟩] ~Q0 ·Q0 𝑞)) ∧ ((𝑥Q𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃) ∧ (𝑚 ∈ ω ∧ (𝑎𝐿 ∧ (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞)) ∈ 𝑈)))) ↔ ((𝑥Q𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃) ∧ (𝑚 ∈ ω ∧ ((𝑥 +Q0 ([⟨𝑚, 1o⟩] ~Q0 ·Q0 𝑞)) ∈ 𝐿 ∧ (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞)) ∈ 𝑈)))))
6059biimprcd 160 . . . . . . . . . . . 12 (((𝑥Q𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃) ∧ (𝑚 ∈ ω ∧ ((𝑥 +Q0 ([⟨𝑚, 1o⟩] ~Q0 ·Q0 𝑞)) ∈ 𝐿 ∧ (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞)) ∈ 𝑈))) → ((𝑥 +Q0 ([⟨𝑚, 1o⟩] ~Q0 ·Q0 𝑞)) ∈ 𝐿 → ∃𝑎(𝑎 = (𝑥 +Q0 ([⟨𝑚, 1o⟩] ~Q0 ·Q0 𝑞)) ∧ ((𝑥Q𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃) ∧ (𝑚 ∈ ω ∧ (𝑎𝐿 ∧ (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞)) ∈ 𝑈))))))
6154, 60mpd 13 . . . . . . . . . . 11 (((𝑥Q𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃) ∧ (𝑚 ∈ ω ∧ ((𝑥 +Q0 ([⟨𝑚, 1o⟩] ~Q0 ·Q0 𝑞)) ∈ 𝐿 ∧ (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞)) ∈ 𝑈))) → ∃𝑎(𝑎 = (𝑥 +Q0 ([⟨𝑚, 1o⟩] ~Q0 ·Q0 𝑞)) ∧ ((𝑥Q𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃) ∧ (𝑚 ∈ ω ∧ (𝑎𝐿 ∧ (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞)) ∈ 𝑈)))))
62 simprrr 540 . . . . . . . . . . 11 (((𝑥Q𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃) ∧ (𝑚 ∈ ω ∧ ((𝑥 +Q0 ([⟨𝑚, 1o⟩] ~Q0 ·Q0 𝑞)) ∈ 𝐿 ∧ (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞)) ∈ 𝑈))) → (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞)) ∈ 𝑈)
63 eleq1 2267 . . . . . . . . . . . . . . . . . 18 (𝑏 = (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞)) → (𝑏𝑈 ↔ (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞)) ∈ 𝑈))
6463anbi2d 464 . . . . . . . . . . . . . . . . 17 (𝑏 = (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞)) → ((𝑎𝐿𝑏𝑈) ↔ (𝑎𝐿 ∧ (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞)) ∈ 𝑈)))
6564anbi2d 464 . . . . . . . . . . . . . . . 16 (𝑏 = (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞)) → ((𝑚 ∈ ω ∧ (𝑎𝐿𝑏𝑈)) ↔ (𝑚 ∈ ω ∧ (𝑎𝐿 ∧ (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞)) ∈ 𝑈))))
6665anbi2d 464 . . . . . . . . . . . . . . 15 (𝑏 = (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞)) → (((𝑥Q𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃) ∧ (𝑚 ∈ ω ∧ (𝑎𝐿𝑏𝑈))) ↔ ((𝑥Q𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃) ∧ (𝑚 ∈ ω ∧ (𝑎𝐿 ∧ (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞)) ∈ 𝑈)))))
6766anbi2d 464 . . . . . . . . . . . . . 14 (𝑏 = (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞)) → ((𝑎 = (𝑥 +Q0 ([⟨𝑚, 1o⟩] ~Q0 ·Q0 𝑞)) ∧ ((𝑥Q𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃) ∧ (𝑚 ∈ ω ∧ (𝑎𝐿𝑏𝑈)))) ↔ (𝑎 = (𝑥 +Q0 ([⟨𝑚, 1o⟩] ~Q0 ·Q0 𝑞)) ∧ ((𝑥Q𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃) ∧ (𝑚 ∈ ω ∧ (𝑎𝐿 ∧ (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞)) ∈ 𝑈))))))
6867exbidv 1847 . . . . . . . . . . . . 13 (𝑏 = (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞)) → (∃𝑎(𝑎 = (𝑥 +Q0 ([⟨𝑚, 1o⟩] ~Q0 ·Q0 𝑞)) ∧ ((𝑥Q𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃) ∧ (𝑚 ∈ ω ∧ (𝑎𝐿𝑏𝑈)))) ↔ ∃𝑎(𝑎 = (𝑥 +Q0 ([⟨𝑚, 1o⟩] ~Q0 ·Q0 𝑞)) ∧ ((𝑥Q𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃) ∧ (𝑚 ∈ ω ∧ (𝑎𝐿 ∧ (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞)) ∈ 𝑈))))))
6968ceqsexgv 2901 . . . . . . . . . . . 12 ((𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞)) ∈ 𝑈 → (∃𝑏(𝑏 = (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞)) ∧ ∃𝑎(𝑎 = (𝑥 +Q0 ([⟨𝑚, 1o⟩] ~Q0 ·Q0 𝑞)) ∧ ((𝑥Q𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃) ∧ (𝑚 ∈ ω ∧ (𝑎𝐿𝑏𝑈))))) ↔ ∃𝑎(𝑎 = (𝑥 +Q0 ([⟨𝑚, 1o⟩] ~Q0 ·Q0 𝑞)) ∧ ((𝑥Q𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃) ∧ (𝑚 ∈ ω ∧ (𝑎𝐿 ∧ (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞)) ∈ 𝑈))))))
7069biimprcd 160 . . . . . . . . . . 11 (∃𝑎(𝑎 = (𝑥 +Q0 ([⟨𝑚, 1o⟩] ~Q0 ·Q0 𝑞)) ∧ ((𝑥Q𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃) ∧ (𝑚 ∈ ω ∧ (𝑎𝐿 ∧ (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞)) ∈ 𝑈)))) → ((𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞)) ∈ 𝑈 → ∃𝑏(𝑏 = (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞)) ∧ ∃𝑎(𝑎 = (𝑥 +Q0 ([⟨𝑚, 1o⟩] ~Q0 ·Q0 𝑞)) ∧ ((𝑥Q𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃) ∧ (𝑚 ∈ ω ∧ (𝑎𝐿𝑏𝑈)))))))
7161, 62, 70sylc 62 . . . . . . . . . 10 (((𝑥Q𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃) ∧ (𝑚 ∈ ω ∧ ((𝑥 +Q0 ([⟨𝑚, 1o⟩] ~Q0 ·Q0 𝑞)) ∈ 𝐿 ∧ (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞)) ∈ 𝑈))) → ∃𝑏(𝑏 = (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞)) ∧ ∃𝑎(𝑎 = (𝑥 +Q0 ([⟨𝑚, 1o⟩] ~Q0 ·Q0 𝑞)) ∧ ((𝑥Q𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃) ∧ (𝑚 ∈ ω ∧ (𝑎𝐿𝑏𝑈))))))
72 19.42v 1929 . . . . . . . . . . 11 (∃𝑎(𝑏 = (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞)) ∧ (𝑎 = (𝑥 +Q0 ([⟨𝑚, 1o⟩] ~Q0 ·Q0 𝑞)) ∧ ((𝑥Q𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃) ∧ (𝑚 ∈ ω ∧ (𝑎𝐿𝑏𝑈))))) ↔ (𝑏 = (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞)) ∧ ∃𝑎(𝑎 = (𝑥 +Q0 ([⟨𝑚, 1o⟩] ~Q0 ·Q0 𝑞)) ∧ ((𝑥Q𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃) ∧ (𝑚 ∈ ω ∧ (𝑎𝐿𝑏𝑈))))))
7372exbii 1627 . . . . . . . . . 10 (∃𝑏𝑎(𝑏 = (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞)) ∧ (𝑎 = (𝑥 +Q0 ([⟨𝑚, 1o⟩] ~Q0 ·Q0 𝑞)) ∧ ((𝑥Q𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃) ∧ (𝑚 ∈ ω ∧ (𝑎𝐿𝑏𝑈))))) ↔ ∃𝑏(𝑏 = (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞)) ∧ ∃𝑎(𝑎 = (𝑥 +Q0 ([⟨𝑚, 1o⟩] ~Q0 ·Q0 𝑞)) ∧ ((𝑥Q𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃) ∧ (𝑚 ∈ ω ∧ (𝑎𝐿𝑏𝑈))))))
7471, 73sylibr 134 . . . . . . . . 9 (((𝑥Q𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃) ∧ (𝑚 ∈ ω ∧ ((𝑥 +Q0 ([⟨𝑚, 1o⟩] ~Q0 ·Q0 𝑞)) ∈ 𝐿 ∧ (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞)) ∈ 𝑈))) → ∃𝑏𝑎(𝑏 = (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞)) ∧ (𝑎 = (𝑥 +Q0 ([⟨𝑚, 1o⟩] ~Q0 ·Q0 𝑞)) ∧ ((𝑥Q𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃) ∧ (𝑚 ∈ ω ∧ (𝑎𝐿𝑏𝑈))))))
75 simprrl 539 . . . . . . . . . . . . . 14 (((𝑥Q𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃) ∧ (𝑚 ∈ ω ∧ (𝑎𝐿𝑏𝑈))) → 𝑎𝐿)
7675adantl 277 . . . . . . . . . . . . 13 (((𝑎 = (𝑥 +Q0 ([⟨𝑚, 1o⟩] ~Q0 ·Q0 𝑞)) ∧ 𝑏 = (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞))) ∧ ((𝑥Q𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃) ∧ (𝑚 ∈ ω ∧ (𝑎𝐿𝑏𝑈)))) → 𝑎𝐿)
77 simprrr 540 . . . . . . . . . . . . . . 15 (((𝑥Q𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃) ∧ (𝑚 ∈ ω ∧ (𝑎𝐿𝑏𝑈))) → 𝑏𝑈)
7877adantl 277 . . . . . . . . . . . . . 14 (((𝑎 = (𝑥 +Q0 ([⟨𝑚, 1o⟩] ~Q0 ·Q0 𝑞)) ∧ 𝑏 = (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞))) ∧ ((𝑥Q𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃) ∧ (𝑚 ∈ ω ∧ (𝑎𝐿𝑏𝑈)))) → 𝑏𝑈)
79 simpl 109 . . . . . . . . . . . . . . 15 (((𝑎 = (𝑥 +Q0 ([⟨𝑚, 1o⟩] ~Q0 ·Q0 𝑞)) ∧ 𝑏 = (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞))) ∧ ((𝑥Q𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃) ∧ (𝑚 ∈ ω ∧ (𝑎𝐿𝑏𝑈)))) → (𝑎 = (𝑥 +Q0 ([⟨𝑚, 1o⟩] ~Q0 ·Q0 𝑞)) ∧ 𝑏 = (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞))))
80 simprl2 1045 . . . . . . . . . . . . . . . 16 (((𝑎 = (𝑥 +Q0 ([⟨𝑚, 1o⟩] ~Q0 ·Q0 𝑞)) ∧ 𝑏 = (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞))) ∧ ((𝑥Q𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃) ∧ (𝑚 ∈ ω ∧ (𝑎𝐿𝑏𝑈)))) → 𝑞Q)
81 simprl3 1046 . . . . . . . . . . . . . . . 16 (((𝑎 = (𝑥 +Q0 ([⟨𝑚, 1o⟩] ~Q0 ·Q0 𝑞)) ∧ 𝑏 = (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞))) ∧ ((𝑥Q𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃) ∧ (𝑚 ∈ ω ∧ (𝑎𝐿𝑏𝑈)))) → (𝑞 +Q 𝑞) <Q 𝑃)
8280, 81jca 306 . . . . . . . . . . . . . . 15 (((𝑎 = (𝑥 +Q0 ([⟨𝑚, 1o⟩] ~Q0 ·Q0 𝑞)) ∧ 𝑏 = (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞))) ∧ ((𝑥Q𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃) ∧ (𝑚 ∈ ω ∧ (𝑎𝐿𝑏𝑈)))) → (𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃))
83 simprl1 1044 . . . . . . . . . . . . . . . 16 (((𝑎 = (𝑥 +Q0 ([⟨𝑚, 1o⟩] ~Q0 ·Q0 𝑞)) ∧ 𝑏 = (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞))) ∧ ((𝑥Q𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃) ∧ (𝑚 ∈ ω ∧ (𝑎𝐿𝑏𝑈)))) → 𝑥Q)
84 simprrl 539 . . . . . . . . . . . . . . . 16 (((𝑎 = (𝑥 +Q0 ([⟨𝑚, 1o⟩] ~Q0 ·Q0 𝑞)) ∧ 𝑏 = (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞))) ∧ ((𝑥Q𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃) ∧ (𝑚 ∈ ω ∧ (𝑎𝐿𝑏𝑈)))) → 𝑚 ∈ ω)
8583, 84jca 306 . . . . . . . . . . . . . . 15 (((𝑎 = (𝑥 +Q0 ([⟨𝑚, 1o⟩] ~Q0 ·Q0 𝑞)) ∧ 𝑏 = (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞))) ∧ ((𝑥Q𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃) ∧ (𝑚 ∈ ω ∧ (𝑎𝐿𝑏𝑈)))) → (𝑥Q𝑚 ∈ ω))
86 prarloclemcalc 7614 . . . . . . . . . . . . . . 15 (((𝑎 = (𝑥 +Q0 ([⟨𝑚, 1o⟩] ~Q0 ·Q0 𝑞)) ∧ 𝑏 = (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞))) ∧ ((𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃) ∧ (𝑥Q𝑚 ∈ ω))) → 𝑏 <Q (𝑎 +Q 𝑃))
8779, 82, 85, 86syl12anc 1247 . . . . . . . . . . . . . 14 (((𝑎 = (𝑥 +Q0 ([⟨𝑚, 1o⟩] ~Q0 ·Q0 𝑞)) ∧ 𝑏 = (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞))) ∧ ((𝑥Q𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃) ∧ (𝑚 ∈ ω ∧ (𝑎𝐿𝑏𝑈)))) → 𝑏 <Q (𝑎 +Q 𝑃))
8878, 87jca 306 . . . . . . . . . . . . 13 (((𝑎 = (𝑥 +Q0 ([⟨𝑚, 1o⟩] ~Q0 ·Q0 𝑞)) ∧ 𝑏 = (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞))) ∧ ((𝑥Q𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃) ∧ (𝑚 ∈ ω ∧ (𝑎𝐿𝑏𝑈)))) → (𝑏𝑈𝑏 <Q (𝑎 +Q 𝑃)))
8976, 88jca 306 . . . . . . . . . . . 12 (((𝑎 = (𝑥 +Q0 ([⟨𝑚, 1o⟩] ~Q0 ·Q0 𝑞)) ∧ 𝑏 = (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞))) ∧ ((𝑥Q𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃) ∧ (𝑚 ∈ ω ∧ (𝑎𝐿𝑏𝑈)))) → (𝑎𝐿 ∧ (𝑏𝑈𝑏 <Q (𝑎 +Q 𝑃))))
9089ancom1s 569 . . . . . . . . . . 11 (((𝑏 = (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞)) ∧ 𝑎 = (𝑥 +Q0 ([⟨𝑚, 1o⟩] ~Q0 ·Q0 𝑞))) ∧ ((𝑥Q𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃) ∧ (𝑚 ∈ ω ∧ (𝑎𝐿𝑏𝑈)))) → (𝑎𝐿 ∧ (𝑏𝑈𝑏 <Q (𝑎 +Q 𝑃))))
9190anasss 399 . . . . . . . . . 10 ((𝑏 = (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞)) ∧ (𝑎 = (𝑥 +Q0 ([⟨𝑚, 1o⟩] ~Q0 ·Q0 𝑞)) ∧ ((𝑥Q𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃) ∧ (𝑚 ∈ ω ∧ (𝑎𝐿𝑏𝑈))))) → (𝑎𝐿 ∧ (𝑏𝑈𝑏 <Q (𝑎 +Q 𝑃))))
92912eximi 1623 . . . . . . . . 9 (∃𝑏𝑎(𝑏 = (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞)) ∧ (𝑎 = (𝑥 +Q0 ([⟨𝑚, 1o⟩] ~Q0 ·Q0 𝑞)) ∧ ((𝑥Q𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃) ∧ (𝑚 ∈ ω ∧ (𝑎𝐿𝑏𝑈))))) → ∃𝑏𝑎(𝑎𝐿 ∧ (𝑏𝑈𝑏 <Q (𝑎 +Q 𝑃))))
9374, 92syl 14 . . . . . . . 8 (((𝑥Q𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃) ∧ (𝑚 ∈ ω ∧ ((𝑥 +Q0 ([⟨𝑚, 1o⟩] ~Q0 ·Q0 𝑞)) ∈ 𝐿 ∧ (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞)) ∈ 𝑈))) → ∃𝑏𝑎(𝑎𝐿 ∧ (𝑏𝑈𝑏 <Q (𝑎 +Q 𝑃))))
9493exlimiv 1620 . . . . . . 7 (∃𝑚((𝑥Q𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃) ∧ (𝑚 ∈ ω ∧ ((𝑥 +Q0 ([⟨𝑚, 1o⟩] ~Q0 ·Q0 𝑞)) ∈ 𝐿 ∧ (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞)) ∈ 𝑈))) → ∃𝑏𝑎(𝑎𝐿 ∧ (𝑏𝑈𝑏 <Q (𝑎 +Q 𝑃))))
9553, 94syl 14 . . . . . 6 ((((𝑥Q𝑥𝐿) ∧ (𝑦Q𝑦𝑈) ∧ ((⟨𝐿, 𝑈⟩ ∈ P𝑃Q) ∧ (𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃))) ∧ (𝑛N ∧ (1o <N 𝑛𝑦 <Q (𝑥 +Q ([⟨𝑛, 1o⟩] ~Q ·Q 𝑞))))) → ∃𝑏𝑎(𝑎𝐿 ∧ (𝑏𝑈𝑏 <Q (𝑎 +Q 𝑃))))
9695exlimivv 1919 . . . . 5 (∃𝑞𝑛(((𝑥Q𝑥𝐿) ∧ (𝑦Q𝑦𝑈) ∧ ((⟨𝐿, 𝑈⟩ ∈ P𝑃Q) ∧ (𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃))) ∧ (𝑛N ∧ (1o <N 𝑛𝑦 <Q (𝑥 +Q ([⟨𝑛, 1o⟩] ~Q ·Q 𝑞))))) → ∃𝑏𝑎(𝑎𝐿 ∧ (𝑏𝑈𝑏 <Q (𝑎 +Q 𝑃))))
9796exlimivv 1919 . . . 4 (∃𝑥𝑦𝑞𝑛(((𝑥Q𝑥𝐿) ∧ (𝑦Q𝑦𝑈) ∧ ((⟨𝐿, 𝑈⟩ ∈ P𝑃Q) ∧ (𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃))) ∧ (𝑛N ∧ (1o <N 𝑛𝑦 <Q (𝑥 +Q ([⟨𝑛, 1o⟩] ~Q ·Q 𝑞))))) → ∃𝑏𝑎(𝑎𝐿 ∧ (𝑏𝑈𝑏 <Q (𝑎 +Q 𝑃))))
9817, 30, 973syl 17 . . 3 ((⟨𝐿, 𝑈⟩ ∈ P𝑃Q) → ∃𝑏𝑎(𝑎𝐿 ∧ (𝑏𝑈𝑏 <Q (𝑎 +Q 𝑃))))
99 excom 1686 . . 3 (∃𝑏𝑎(𝑎𝐿 ∧ (𝑏𝑈𝑏 <Q (𝑎 +Q 𝑃))) ↔ ∃𝑎𝑏(𝑎𝐿 ∧ (𝑏𝑈𝑏 <Q (𝑎 +Q 𝑃))))
10098, 99sylib 122 . 2 ((⟨𝐿, 𝑈⟩ ∈ P𝑃Q) → ∃𝑎𝑏(𝑎𝐿 ∧ (𝑏𝑈𝑏 <Q (𝑎 +Q 𝑃))))
101 19.42v 1929 . . . . 5 (∃𝑏(𝑎𝐿 ∧ (𝑏𝑈𝑏 <Q (𝑎 +Q 𝑃))) ↔ (𝑎𝐿 ∧ ∃𝑏(𝑏𝑈𝑏 <Q (𝑎 +Q 𝑃))))
102 df-rex 2489 . . . . . 6 (∃𝑏𝑈 𝑏 <Q (𝑎 +Q 𝑃) ↔ ∃𝑏(𝑏𝑈𝑏 <Q (𝑎 +Q 𝑃)))
103102anbi2i 457 . . . . 5 ((𝑎𝐿 ∧ ∃𝑏𝑈 𝑏 <Q (𝑎 +Q 𝑃)) ↔ (𝑎𝐿 ∧ ∃𝑏(𝑏𝑈𝑏 <Q (𝑎 +Q 𝑃))))
104101, 103bitr4i 187 . . . 4 (∃𝑏(𝑎𝐿 ∧ (𝑏𝑈𝑏 <Q (𝑎 +Q 𝑃))) ↔ (𝑎𝐿 ∧ ∃𝑏𝑈 𝑏 <Q (𝑎 +Q 𝑃)))
105104exbii 1627 . . 3 (∃𝑎𝑏(𝑎𝐿 ∧ (𝑏𝑈𝑏 <Q (𝑎 +Q 𝑃))) ↔ ∃𝑎(𝑎𝐿 ∧ ∃𝑏𝑈 𝑏 <Q (𝑎 +Q 𝑃)))
106 df-rex 2489 . . 3 (∃𝑎𝐿𝑏𝑈 𝑏 <Q (𝑎 +Q 𝑃) ↔ ∃𝑎(𝑎𝐿 ∧ ∃𝑏𝑈 𝑏 <Q (𝑎 +Q 𝑃)))
107105, 106bitr4i 187 . 2 (∃𝑎𝑏(𝑎𝐿 ∧ (𝑏𝑈𝑏 <Q (𝑎 +Q 𝑃))) ↔ ∃𝑎𝐿𝑏𝑈 𝑏 <Q (𝑎 +Q 𝑃))
108100, 107sylib 122 1 ((⟨𝐿, 𝑈⟩ ∈ P𝑃Q) → ∃𝑎𝐿𝑏𝑈 𝑏 <Q (𝑎 +Q 𝑃))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 980   = wceq 1372  wex 1514  wcel 2175  wrex 2484  cop 3635   class class class wbr 4043  ωcom 4637  (class class class)co 5943  1oc1o 6494  2oc2o 6495   +o coa 6498  [cec 6617  Ncnpi 7384   <N clti 7387   ~Q ceq 7391  Qcnq 7392   +Q cplq 7394   ·Q cmq 7395   <Q cltq 7397   ~Q0 ceq0 7398   +Q0 cplq0 7401   ·Q0 cmq0 7402  Pcnp 7403
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-nul 4169  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-setind 4584  ax-iinf 4635
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-ral 2488  df-rex 2489  df-reu 2490  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-tr 4142  df-eprel 4335  df-id 4339  df-po 4342  df-iso 4343  df-iord 4412  df-on 4414  df-suc 4417  df-iom 4638  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-ima 4687  df-iota 5231  df-fun 5272  df-fn 5273  df-f 5274  df-f1 5275  df-fo 5276  df-f1o 5277  df-fv 5278  df-ov 5946  df-oprab 5947  df-mpo 5948  df-1st 6225  df-2nd 6226  df-recs 6390  df-irdg 6455  df-1o 6501  df-2o 6502  df-oadd 6505  df-omul 6506  df-er 6619  df-ec 6621  df-qs 6625  df-ni 7416  df-pli 7417  df-mi 7418  df-lti 7419  df-plpq 7456  df-mpq 7457  df-enq 7459  df-nqqs 7460  df-plqqs 7461  df-mqqs 7462  df-1nqqs 7463  df-rq 7464  df-ltnqqs 7465  df-enq0 7536  df-nq0 7537  df-0nq0 7538  df-plq0 7539  df-mq0 7540  df-inp 7578
This theorem is referenced by:  prarloc2  7616  addlocpr  7648  prmuloc  7678  ltaddpr  7709  ltexprlemloc  7719  ltexprlemrl  7722  ltexprlemru  7724
  Copyright terms: Public domain W3C validator