ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prarloc GIF version

Theorem prarloc 7565
Description: A Dedekind cut is arithmetically located. Part of Proposition 11.15 of [BauerTaylor], p. 52, slightly modified. It states that given a tolerance 𝑃, there are elements of the lower and upper cut which are within that tolerance of each other.

Usually, proofs will be shorter if they use prarloc2 7566 instead. (Contributed by Jim Kingdon, 22-Oct-2019.)

Assertion
Ref Expression
prarloc ((⟨𝐿, 𝑈⟩ ∈ P𝑃Q) → ∃𝑎𝐿𝑏𝑈 𝑏 <Q (𝑎 +Q 𝑃))
Distinct variable groups:   𝐿,𝑎,𝑏   𝑃,𝑎,𝑏   𝑈,𝑎,𝑏

Proof of Theorem prarloc
Dummy variables 𝑚 𝑛 𝑞 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prml 7539 . . . . . . 7 (⟨𝐿, 𝑈⟩ ∈ P → ∃𝑥Q 𝑥𝐿)
2 df-rex 2478 . . . . . . 7 (∃𝑥Q 𝑥𝐿 ↔ ∃𝑥(𝑥Q𝑥𝐿))
31, 2sylib 122 . . . . . 6 (⟨𝐿, 𝑈⟩ ∈ P → ∃𝑥(𝑥Q𝑥𝐿))
43adantr 276 . . . . 5 ((⟨𝐿, 𝑈⟩ ∈ P𝑃Q) → ∃𝑥(𝑥Q𝑥𝐿))
5 prmu 7540 . . . . . . 7 (⟨𝐿, 𝑈⟩ ∈ P → ∃𝑦Q 𝑦𝑈)
6 df-rex 2478 . . . . . . 7 (∃𝑦Q 𝑦𝑈 ↔ ∃𝑦(𝑦Q𝑦𝑈))
75, 6sylib 122 . . . . . 6 (⟨𝐿, 𝑈⟩ ∈ P → ∃𝑦(𝑦Q𝑦𝑈))
87adantr 276 . . . . 5 ((⟨𝐿, 𝑈⟩ ∈ P𝑃Q) → ∃𝑦(𝑦Q𝑦𝑈))
9 subhalfnqq 7476 . . . . . . . . 9 (𝑃Q → ∃𝑞Q (𝑞 +Q 𝑞) <Q 𝑃)
109adantl 277 . . . . . . . 8 ((⟨𝐿, 𝑈⟩ ∈ P𝑃Q) → ∃𝑞Q (𝑞 +Q 𝑞) <Q 𝑃)
11 df-rex 2478 . . . . . . . 8 (∃𝑞Q (𝑞 +Q 𝑞) <Q 𝑃 ↔ ∃𝑞(𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃))
1210, 11sylib 122 . . . . . . 7 ((⟨𝐿, 𝑈⟩ ∈ P𝑃Q) → ∃𝑞(𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃))
1312ancli 323 . . . . . 6 ((⟨𝐿, 𝑈⟩ ∈ P𝑃Q) → ((⟨𝐿, 𝑈⟩ ∈ P𝑃Q) ∧ ∃𝑞(𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃)))
14 19.42v 1918 . . . . . 6 (∃𝑞((⟨𝐿, 𝑈⟩ ∈ P𝑃Q) ∧ (𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃)) ↔ ((⟨𝐿, 𝑈⟩ ∈ P𝑃Q) ∧ ∃𝑞(𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃)))
1513, 14sylibr 134 . . . . 5 ((⟨𝐿, 𝑈⟩ ∈ P𝑃Q) → ∃𝑞((⟨𝐿, 𝑈⟩ ∈ P𝑃Q) ∧ (𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃)))
16 eeeanv 1949 . . . . 5 (∃𝑥𝑦𝑞((𝑥Q𝑥𝐿) ∧ (𝑦Q𝑦𝑈) ∧ ((⟨𝐿, 𝑈⟩ ∈ P𝑃Q) ∧ (𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃))) ↔ (∃𝑥(𝑥Q𝑥𝐿) ∧ ∃𝑦(𝑦Q𝑦𝑈) ∧ ∃𝑞((⟨𝐿, 𝑈⟩ ∈ P𝑃Q) ∧ (𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃))))
174, 8, 15, 16syl3anbrc 1183 . . . 4 ((⟨𝐿, 𝑈⟩ ∈ P𝑃Q) → ∃𝑥𝑦𝑞((𝑥Q𝑥𝐿) ∧ (𝑦Q𝑦𝑈) ∧ ((⟨𝐿, 𝑈⟩ ∈ P𝑃Q) ∧ (𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃))))
18 prarloclemarch2 7481 . . . . . . . . . . . . . 14 ((𝑦Q𝑥Q𝑞Q) → ∃𝑛N (1o <N 𝑛𝑦 <Q (𝑥 +Q ([⟨𝑛, 1o⟩] ~Q ·Q 𝑞))))
19 df-rex 2478 . . . . . . . . . . . . . 14 (∃𝑛N (1o <N 𝑛𝑦 <Q (𝑥 +Q ([⟨𝑛, 1o⟩] ~Q ·Q 𝑞))) ↔ ∃𝑛(𝑛N ∧ (1o <N 𝑛𝑦 <Q (𝑥 +Q ([⟨𝑛, 1o⟩] ~Q ·Q 𝑞)))))
2018, 19sylib 122 . . . . . . . . . . . . 13 ((𝑦Q𝑥Q𝑞Q) → ∃𝑛(𝑛N ∧ (1o <N 𝑛𝑦 <Q (𝑥 +Q ([⟨𝑛, 1o⟩] ~Q ·Q 𝑞)))))
21203com12 1209 . . . . . . . . . . . 12 ((𝑥Q𝑦Q𝑞Q) → ∃𝑛(𝑛N ∧ (1o <N 𝑛𝑦 <Q (𝑥 +Q ([⟨𝑛, 1o⟩] ~Q ·Q 𝑞)))))
22213adant1r 1233 . . . . . . . . . . 11 (((𝑥Q𝑥𝐿) ∧ 𝑦Q𝑞Q) → ∃𝑛(𝑛N ∧ (1o <N 𝑛𝑦 <Q (𝑥 +Q ([⟨𝑛, 1o⟩] ~Q ·Q 𝑞)))))
23223adant2r 1235 . . . . . . . . . 10 (((𝑥Q𝑥𝐿) ∧ (𝑦Q𝑦𝑈) ∧ 𝑞Q) → ∃𝑛(𝑛N ∧ (1o <N 𝑛𝑦 <Q (𝑥 +Q ([⟨𝑛, 1o⟩] ~Q ·Q 𝑞)))))
24233adant3r 1237 . . . . . . . . 9 (((𝑥Q𝑥𝐿) ∧ (𝑦Q𝑦𝑈) ∧ (𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃)) → ∃𝑛(𝑛N ∧ (1o <N 𝑛𝑦 <Q (𝑥 +Q ([⟨𝑛, 1o⟩] ~Q ·Q 𝑞)))))
25243adant3l 1236 . . . . . . . 8 (((𝑥Q𝑥𝐿) ∧ (𝑦Q𝑦𝑈) ∧ ((⟨𝐿, 𝑈⟩ ∈ P𝑃Q) ∧ (𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃))) → ∃𝑛(𝑛N ∧ (1o <N 𝑛𝑦 <Q (𝑥 +Q ([⟨𝑛, 1o⟩] ~Q ·Q 𝑞)))))
2625ancli 323 . . . . . . 7 (((𝑥Q𝑥𝐿) ∧ (𝑦Q𝑦𝑈) ∧ ((⟨𝐿, 𝑈⟩ ∈ P𝑃Q) ∧ (𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃))) → (((𝑥Q𝑥𝐿) ∧ (𝑦Q𝑦𝑈) ∧ ((⟨𝐿, 𝑈⟩ ∈ P𝑃Q) ∧ (𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃))) ∧ ∃𝑛(𝑛N ∧ (1o <N 𝑛𝑦 <Q (𝑥 +Q ([⟨𝑛, 1o⟩] ~Q ·Q 𝑞))))))
27 19.42v 1918 . . . . . . 7 (∃𝑛(((𝑥Q𝑥𝐿) ∧ (𝑦Q𝑦𝑈) ∧ ((⟨𝐿, 𝑈⟩ ∈ P𝑃Q) ∧ (𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃))) ∧ (𝑛N ∧ (1o <N 𝑛𝑦 <Q (𝑥 +Q ([⟨𝑛, 1o⟩] ~Q ·Q 𝑞))))) ↔ (((𝑥Q𝑥𝐿) ∧ (𝑦Q𝑦𝑈) ∧ ((⟨𝐿, 𝑈⟩ ∈ P𝑃Q) ∧ (𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃))) ∧ ∃𝑛(𝑛N ∧ (1o <N 𝑛𝑦 <Q (𝑥 +Q ([⟨𝑛, 1o⟩] ~Q ·Q 𝑞))))))
2826, 27sylibr 134 . . . . . 6 (((𝑥Q𝑥𝐿) ∧ (𝑦Q𝑦𝑈) ∧ ((⟨𝐿, 𝑈⟩ ∈ P𝑃Q) ∧ (𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃))) → ∃𝑛(((𝑥Q𝑥𝐿) ∧ (𝑦Q𝑦𝑈) ∧ ((⟨𝐿, 𝑈⟩ ∈ P𝑃Q) ∧ (𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃))) ∧ (𝑛N ∧ (1o <N 𝑛𝑦 <Q (𝑥 +Q ([⟨𝑛, 1o⟩] ~Q ·Q 𝑞))))))
29282eximi 1612 . . . . 5 (∃𝑦𝑞((𝑥Q𝑥𝐿) ∧ (𝑦Q𝑦𝑈) ∧ ((⟨𝐿, 𝑈⟩ ∈ P𝑃Q) ∧ (𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃))) → ∃𝑦𝑞𝑛(((𝑥Q𝑥𝐿) ∧ (𝑦Q𝑦𝑈) ∧ ((⟨𝐿, 𝑈⟩ ∈ P𝑃Q) ∧ (𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃))) ∧ (𝑛N ∧ (1o <N 𝑛𝑦 <Q (𝑥 +Q ([⟨𝑛, 1o⟩] ~Q ·Q 𝑞))))))
3029eximi 1611 . . . 4 (∃𝑥𝑦𝑞((𝑥Q𝑥𝐿) ∧ (𝑦Q𝑦𝑈) ∧ ((⟨𝐿, 𝑈⟩ ∈ P𝑃Q) ∧ (𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃))) → ∃𝑥𝑦𝑞𝑛(((𝑥Q𝑥𝐿) ∧ (𝑦Q𝑦𝑈) ∧ ((⟨𝐿, 𝑈⟩ ∈ P𝑃Q) ∧ (𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃))) ∧ (𝑛N ∧ (1o <N 𝑛𝑦 <Q (𝑥 +Q ([⟨𝑛, 1o⟩] ~Q ·Q 𝑞))))))
31 simpl1l 1050 . . . . . . . . . 10 ((((𝑥Q𝑥𝐿) ∧ (𝑦Q𝑦𝑈) ∧ ((⟨𝐿, 𝑈⟩ ∈ P𝑃Q) ∧ (𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃))) ∧ (𝑛N ∧ (1o <N 𝑛𝑦 <Q (𝑥 +Q ([⟨𝑛, 1o⟩] ~Q ·Q 𝑞))))) → 𝑥Q)
32 simp3rl 1072 . . . . . . . . . . 11 (((𝑥Q𝑥𝐿) ∧ (𝑦Q𝑦𝑈) ∧ ((⟨𝐿, 𝑈⟩ ∈ P𝑃Q) ∧ (𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃))) → 𝑞Q)
3332adantr 276 . . . . . . . . . 10 ((((𝑥Q𝑥𝐿) ∧ (𝑦Q𝑦𝑈) ∧ ((⟨𝐿, 𝑈⟩ ∈ P𝑃Q) ∧ (𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃))) ∧ (𝑛N ∧ (1o <N 𝑛𝑦 <Q (𝑥 +Q ([⟨𝑛, 1o⟩] ~Q ·Q 𝑞))))) → 𝑞Q)
34 simp3rr 1073 . . . . . . . . . . 11 (((𝑥Q𝑥𝐿) ∧ (𝑦Q𝑦𝑈) ∧ ((⟨𝐿, 𝑈⟩ ∈ P𝑃Q) ∧ (𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃))) → (𝑞 +Q 𝑞) <Q 𝑃)
3534adantr 276 . . . . . . . . . 10 ((((𝑥Q𝑥𝐿) ∧ (𝑦Q𝑦𝑈) ∧ ((⟨𝐿, 𝑈⟩ ∈ P𝑃Q) ∧ (𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃))) ∧ (𝑛N ∧ (1o <N 𝑛𝑦 <Q (𝑥 +Q ([⟨𝑛, 1o⟩] ~Q ·Q 𝑞))))) → (𝑞 +Q 𝑞) <Q 𝑃)
3631, 33, 353jca 1179 . . . . . . . . 9 ((((𝑥Q𝑥𝐿) ∧ (𝑦Q𝑦𝑈) ∧ ((⟨𝐿, 𝑈⟩ ∈ P𝑃Q) ∧ (𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃))) ∧ (𝑛N ∧ (1o <N 𝑛𝑦 <Q (𝑥 +Q ([⟨𝑛, 1o⟩] ~Q ·Q 𝑞))))) → (𝑥Q𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃))
37 simp3ll 1070 . . . . . . . . . . . 12 (((𝑥Q𝑥𝐿) ∧ (𝑦Q𝑦𝑈) ∧ ((⟨𝐿, 𝑈⟩ ∈ P𝑃Q) ∧ (𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃))) → ⟨𝐿, 𝑈⟩ ∈ P)
3837adantr 276 . . . . . . . . . . 11 ((((𝑥Q𝑥𝐿) ∧ (𝑦Q𝑦𝑈) ∧ ((⟨𝐿, 𝑈⟩ ∈ P𝑃Q) ∧ (𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃))) ∧ (𝑛N ∧ (1o <N 𝑛𝑦 <Q (𝑥 +Q ([⟨𝑛, 1o⟩] ~Q ·Q 𝑞))))) → ⟨𝐿, 𝑈⟩ ∈ P)
39 simpl1r 1051 . . . . . . . . . . 11 ((((𝑥Q𝑥𝐿) ∧ (𝑦Q𝑦𝑈) ∧ ((⟨𝐿, 𝑈⟩ ∈ P𝑃Q) ∧ (𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃))) ∧ (𝑛N ∧ (1o <N 𝑛𝑦 <Q (𝑥 +Q ([⟨𝑛, 1o⟩] ~Q ·Q 𝑞))))) → 𝑥𝐿)
40 simprl 529 . . . . . . . . . . 11 ((((𝑥Q𝑥𝐿) ∧ (𝑦Q𝑦𝑈) ∧ ((⟨𝐿, 𝑈⟩ ∈ P𝑃Q) ∧ (𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃))) ∧ (𝑛N ∧ (1o <N 𝑛𝑦 <Q (𝑥 +Q ([⟨𝑛, 1o⟩] ~Q ·Q 𝑞))))) → 𝑛N)
41 simprrl 539 . . . . . . . . . . 11 ((((𝑥Q𝑥𝐿) ∧ (𝑦Q𝑦𝑈) ∧ ((⟨𝐿, 𝑈⟩ ∈ P𝑃Q) ∧ (𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃))) ∧ (𝑛N ∧ (1o <N 𝑛𝑦 <Q (𝑥 +Q ([⟨𝑛, 1o⟩] ~Q ·Q 𝑞))))) → 1o <N 𝑛)
42 simprrr 540 . . . . . . . . . . . 12 ((((𝑥Q𝑥𝐿) ∧ (𝑦Q𝑦𝑈) ∧ ((⟨𝐿, 𝑈⟩ ∈ P𝑃Q) ∧ (𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃))) ∧ (𝑛N ∧ (1o <N 𝑛𝑦 <Q (𝑥 +Q ([⟨𝑛, 1o⟩] ~Q ·Q 𝑞))))) → 𝑦 <Q (𝑥 +Q ([⟨𝑛, 1o⟩] ~Q ·Q 𝑞)))
43 simpl2r 1053 . . . . . . . . . . . . 13 ((((𝑥Q𝑥𝐿) ∧ (𝑦Q𝑦𝑈) ∧ ((⟨𝐿, 𝑈⟩ ∈ P𝑃Q) ∧ (𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃))) ∧ (𝑛N ∧ (1o <N 𝑛𝑦 <Q (𝑥 +Q ([⟨𝑛, 1o⟩] ~Q ·Q 𝑞))))) → 𝑦𝑈)
44 prcunqu 7547 . . . . . . . . . . . . 13 ((⟨𝐿, 𝑈⟩ ∈ P𝑦𝑈) → (𝑦 <Q (𝑥 +Q ([⟨𝑛, 1o⟩] ~Q ·Q 𝑞)) → (𝑥 +Q ([⟨𝑛, 1o⟩] ~Q ·Q 𝑞)) ∈ 𝑈))
4538, 43, 44syl2anc 411 . . . . . . . . . . . 12 ((((𝑥Q𝑥𝐿) ∧ (𝑦Q𝑦𝑈) ∧ ((⟨𝐿, 𝑈⟩ ∈ P𝑃Q) ∧ (𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃))) ∧ (𝑛N ∧ (1o <N 𝑛𝑦 <Q (𝑥 +Q ([⟨𝑛, 1o⟩] ~Q ·Q 𝑞))))) → (𝑦 <Q (𝑥 +Q ([⟨𝑛, 1o⟩] ~Q ·Q 𝑞)) → (𝑥 +Q ([⟨𝑛, 1o⟩] ~Q ·Q 𝑞)) ∈ 𝑈))
4642, 45mpd 13 . . . . . . . . . . 11 ((((𝑥Q𝑥𝐿) ∧ (𝑦Q𝑦𝑈) ∧ ((⟨𝐿, 𝑈⟩ ∈ P𝑃Q) ∧ (𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃))) ∧ (𝑛N ∧ (1o <N 𝑛𝑦 <Q (𝑥 +Q ([⟨𝑛, 1o⟩] ~Q ·Q 𝑞))))) → (𝑥 +Q ([⟨𝑛, 1o⟩] ~Q ·Q 𝑞)) ∈ 𝑈)
47 prarloclem 7563 . . . . . . . . . . 11 (((⟨𝐿, 𝑈⟩ ∈ P𝑥𝐿) ∧ (𝑛N𝑞Q ∧ 1o <N 𝑛) ∧ (𝑥 +Q ([⟨𝑛, 1o⟩] ~Q ·Q 𝑞)) ∈ 𝑈) → ∃𝑚 ∈ ω ((𝑥 +Q0 ([⟨𝑚, 1o⟩] ~Q0 ·Q0 𝑞)) ∈ 𝐿 ∧ (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞)) ∈ 𝑈))
4838, 39, 40, 33, 41, 46, 47syl231anc 1269 . . . . . . . . . 10 ((((𝑥Q𝑥𝐿) ∧ (𝑦Q𝑦𝑈) ∧ ((⟨𝐿, 𝑈⟩ ∈ P𝑃Q) ∧ (𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃))) ∧ (𝑛N ∧ (1o <N 𝑛𝑦 <Q (𝑥 +Q ([⟨𝑛, 1o⟩] ~Q ·Q 𝑞))))) → ∃𝑚 ∈ ω ((𝑥 +Q0 ([⟨𝑚, 1o⟩] ~Q0 ·Q0 𝑞)) ∈ 𝐿 ∧ (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞)) ∈ 𝑈))
49 df-rex 2478 . . . . . . . . . 10 (∃𝑚 ∈ ω ((𝑥 +Q0 ([⟨𝑚, 1o⟩] ~Q0 ·Q0 𝑞)) ∈ 𝐿 ∧ (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞)) ∈ 𝑈) ↔ ∃𝑚(𝑚 ∈ ω ∧ ((𝑥 +Q0 ([⟨𝑚, 1o⟩] ~Q0 ·Q0 𝑞)) ∈ 𝐿 ∧ (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞)) ∈ 𝑈)))
5048, 49sylib 122 . . . . . . . . 9 ((((𝑥Q𝑥𝐿) ∧ (𝑦Q𝑦𝑈) ∧ ((⟨𝐿, 𝑈⟩ ∈ P𝑃Q) ∧ (𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃))) ∧ (𝑛N ∧ (1o <N 𝑛𝑦 <Q (𝑥 +Q ([⟨𝑛, 1o⟩] ~Q ·Q 𝑞))))) → ∃𝑚(𝑚 ∈ ω ∧ ((𝑥 +Q0 ([⟨𝑚, 1o⟩] ~Q0 ·Q0 𝑞)) ∈ 𝐿 ∧ (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞)) ∈ 𝑈)))
5136, 50jca 306 . . . . . . . 8 ((((𝑥Q𝑥𝐿) ∧ (𝑦Q𝑦𝑈) ∧ ((⟨𝐿, 𝑈⟩ ∈ P𝑃Q) ∧ (𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃))) ∧ (𝑛N ∧ (1o <N 𝑛𝑦 <Q (𝑥 +Q ([⟨𝑛, 1o⟩] ~Q ·Q 𝑞))))) → ((𝑥Q𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃) ∧ ∃𝑚(𝑚 ∈ ω ∧ ((𝑥 +Q0 ([⟨𝑚, 1o⟩] ~Q0 ·Q0 𝑞)) ∈ 𝐿 ∧ (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞)) ∈ 𝑈))))
52 19.42v 1918 . . . . . . . 8 (∃𝑚((𝑥Q𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃) ∧ (𝑚 ∈ ω ∧ ((𝑥 +Q0 ([⟨𝑚, 1o⟩] ~Q0 ·Q0 𝑞)) ∈ 𝐿 ∧ (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞)) ∈ 𝑈))) ↔ ((𝑥Q𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃) ∧ ∃𝑚(𝑚 ∈ ω ∧ ((𝑥 +Q0 ([⟨𝑚, 1o⟩] ~Q0 ·Q0 𝑞)) ∈ 𝐿 ∧ (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞)) ∈ 𝑈))))
5351, 52sylibr 134 . . . . . . 7 ((((𝑥Q𝑥𝐿) ∧ (𝑦Q𝑦𝑈) ∧ ((⟨𝐿, 𝑈⟩ ∈ P𝑃Q) ∧ (𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃))) ∧ (𝑛N ∧ (1o <N 𝑛𝑦 <Q (𝑥 +Q ([⟨𝑛, 1o⟩] ~Q ·Q 𝑞))))) → ∃𝑚((𝑥Q𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃) ∧ (𝑚 ∈ ω ∧ ((𝑥 +Q0 ([⟨𝑚, 1o⟩] ~Q0 ·Q0 𝑞)) ∈ 𝐿 ∧ (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞)) ∈ 𝑈))))
54 simprrl 539 . . . . . . . . . . . 12 (((𝑥Q𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃) ∧ (𝑚 ∈ ω ∧ ((𝑥 +Q0 ([⟨𝑚, 1o⟩] ~Q0 ·Q0 𝑞)) ∈ 𝐿 ∧ (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞)) ∈ 𝑈))) → (𝑥 +Q0 ([⟨𝑚, 1o⟩] ~Q0 ·Q0 𝑞)) ∈ 𝐿)
55 eleq1 2256 . . . . . . . . . . . . . . . . 17 (𝑎 = (𝑥 +Q0 ([⟨𝑚, 1o⟩] ~Q0 ·Q0 𝑞)) → (𝑎𝐿 ↔ (𝑥 +Q0 ([⟨𝑚, 1o⟩] ~Q0 ·Q0 𝑞)) ∈ 𝐿))
5655anbi1d 465 . . . . . . . . . . . . . . . 16 (𝑎 = (𝑥 +Q0 ([⟨𝑚, 1o⟩] ~Q0 ·Q0 𝑞)) → ((𝑎𝐿 ∧ (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞)) ∈ 𝑈) ↔ ((𝑥 +Q0 ([⟨𝑚, 1o⟩] ~Q0 ·Q0 𝑞)) ∈ 𝐿 ∧ (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞)) ∈ 𝑈)))
5756anbi2d 464 . . . . . . . . . . . . . . 15 (𝑎 = (𝑥 +Q0 ([⟨𝑚, 1o⟩] ~Q0 ·Q0 𝑞)) → ((𝑚 ∈ ω ∧ (𝑎𝐿 ∧ (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞)) ∈ 𝑈)) ↔ (𝑚 ∈ ω ∧ ((𝑥 +Q0 ([⟨𝑚, 1o⟩] ~Q0 ·Q0 𝑞)) ∈ 𝐿 ∧ (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞)) ∈ 𝑈))))
5857anbi2d 464 . . . . . . . . . . . . . 14 (𝑎 = (𝑥 +Q0 ([⟨𝑚, 1o⟩] ~Q0 ·Q0 𝑞)) → (((𝑥Q𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃) ∧ (𝑚 ∈ ω ∧ (𝑎𝐿 ∧ (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞)) ∈ 𝑈))) ↔ ((𝑥Q𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃) ∧ (𝑚 ∈ ω ∧ ((𝑥 +Q0 ([⟨𝑚, 1o⟩] ~Q0 ·Q0 𝑞)) ∈ 𝐿 ∧ (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞)) ∈ 𝑈)))))
5958ceqsexgv 2890 . . . . . . . . . . . . 13 ((𝑥 +Q0 ([⟨𝑚, 1o⟩] ~Q0 ·Q0 𝑞)) ∈ 𝐿 → (∃𝑎(𝑎 = (𝑥 +Q0 ([⟨𝑚, 1o⟩] ~Q0 ·Q0 𝑞)) ∧ ((𝑥Q𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃) ∧ (𝑚 ∈ ω ∧ (𝑎𝐿 ∧ (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞)) ∈ 𝑈)))) ↔ ((𝑥Q𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃) ∧ (𝑚 ∈ ω ∧ ((𝑥 +Q0 ([⟨𝑚, 1o⟩] ~Q0 ·Q0 𝑞)) ∈ 𝐿 ∧ (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞)) ∈ 𝑈)))))
6059biimprcd 160 . . . . . . . . . . . 12 (((𝑥Q𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃) ∧ (𝑚 ∈ ω ∧ ((𝑥 +Q0 ([⟨𝑚, 1o⟩] ~Q0 ·Q0 𝑞)) ∈ 𝐿 ∧ (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞)) ∈ 𝑈))) → ((𝑥 +Q0 ([⟨𝑚, 1o⟩] ~Q0 ·Q0 𝑞)) ∈ 𝐿 → ∃𝑎(𝑎 = (𝑥 +Q0 ([⟨𝑚, 1o⟩] ~Q0 ·Q0 𝑞)) ∧ ((𝑥Q𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃) ∧ (𝑚 ∈ ω ∧ (𝑎𝐿 ∧ (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞)) ∈ 𝑈))))))
6154, 60mpd 13 . . . . . . . . . . 11 (((𝑥Q𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃) ∧ (𝑚 ∈ ω ∧ ((𝑥 +Q0 ([⟨𝑚, 1o⟩] ~Q0 ·Q0 𝑞)) ∈ 𝐿 ∧ (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞)) ∈ 𝑈))) → ∃𝑎(𝑎 = (𝑥 +Q0 ([⟨𝑚, 1o⟩] ~Q0 ·Q0 𝑞)) ∧ ((𝑥Q𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃) ∧ (𝑚 ∈ ω ∧ (𝑎𝐿 ∧ (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞)) ∈ 𝑈)))))
62 simprrr 540 . . . . . . . . . . 11 (((𝑥Q𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃) ∧ (𝑚 ∈ ω ∧ ((𝑥 +Q0 ([⟨𝑚, 1o⟩] ~Q0 ·Q0 𝑞)) ∈ 𝐿 ∧ (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞)) ∈ 𝑈))) → (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞)) ∈ 𝑈)
63 eleq1 2256 . . . . . . . . . . . . . . . . . 18 (𝑏 = (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞)) → (𝑏𝑈 ↔ (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞)) ∈ 𝑈))
6463anbi2d 464 . . . . . . . . . . . . . . . . 17 (𝑏 = (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞)) → ((𝑎𝐿𝑏𝑈) ↔ (𝑎𝐿 ∧ (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞)) ∈ 𝑈)))
6564anbi2d 464 . . . . . . . . . . . . . . . 16 (𝑏 = (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞)) → ((𝑚 ∈ ω ∧ (𝑎𝐿𝑏𝑈)) ↔ (𝑚 ∈ ω ∧ (𝑎𝐿 ∧ (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞)) ∈ 𝑈))))
6665anbi2d 464 . . . . . . . . . . . . . . 15 (𝑏 = (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞)) → (((𝑥Q𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃) ∧ (𝑚 ∈ ω ∧ (𝑎𝐿𝑏𝑈))) ↔ ((𝑥Q𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃) ∧ (𝑚 ∈ ω ∧ (𝑎𝐿 ∧ (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞)) ∈ 𝑈)))))
6766anbi2d 464 . . . . . . . . . . . . . 14 (𝑏 = (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞)) → ((𝑎 = (𝑥 +Q0 ([⟨𝑚, 1o⟩] ~Q0 ·Q0 𝑞)) ∧ ((𝑥Q𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃) ∧ (𝑚 ∈ ω ∧ (𝑎𝐿𝑏𝑈)))) ↔ (𝑎 = (𝑥 +Q0 ([⟨𝑚, 1o⟩] ~Q0 ·Q0 𝑞)) ∧ ((𝑥Q𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃) ∧ (𝑚 ∈ ω ∧ (𝑎𝐿 ∧ (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞)) ∈ 𝑈))))))
6867exbidv 1836 . . . . . . . . . . . . 13 (𝑏 = (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞)) → (∃𝑎(𝑎 = (𝑥 +Q0 ([⟨𝑚, 1o⟩] ~Q0 ·Q0 𝑞)) ∧ ((𝑥Q𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃) ∧ (𝑚 ∈ ω ∧ (𝑎𝐿𝑏𝑈)))) ↔ ∃𝑎(𝑎 = (𝑥 +Q0 ([⟨𝑚, 1o⟩] ~Q0 ·Q0 𝑞)) ∧ ((𝑥Q𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃) ∧ (𝑚 ∈ ω ∧ (𝑎𝐿 ∧ (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞)) ∈ 𝑈))))))
6968ceqsexgv 2890 . . . . . . . . . . . 12 ((𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞)) ∈ 𝑈 → (∃𝑏(𝑏 = (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞)) ∧ ∃𝑎(𝑎 = (𝑥 +Q0 ([⟨𝑚, 1o⟩] ~Q0 ·Q0 𝑞)) ∧ ((𝑥Q𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃) ∧ (𝑚 ∈ ω ∧ (𝑎𝐿𝑏𝑈))))) ↔ ∃𝑎(𝑎 = (𝑥 +Q0 ([⟨𝑚, 1o⟩] ~Q0 ·Q0 𝑞)) ∧ ((𝑥Q𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃) ∧ (𝑚 ∈ ω ∧ (𝑎𝐿 ∧ (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞)) ∈ 𝑈))))))
7069biimprcd 160 . . . . . . . . . . 11 (∃𝑎(𝑎 = (𝑥 +Q0 ([⟨𝑚, 1o⟩] ~Q0 ·Q0 𝑞)) ∧ ((𝑥Q𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃) ∧ (𝑚 ∈ ω ∧ (𝑎𝐿 ∧ (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞)) ∈ 𝑈)))) → ((𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞)) ∈ 𝑈 → ∃𝑏(𝑏 = (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞)) ∧ ∃𝑎(𝑎 = (𝑥 +Q0 ([⟨𝑚, 1o⟩] ~Q0 ·Q0 𝑞)) ∧ ((𝑥Q𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃) ∧ (𝑚 ∈ ω ∧ (𝑎𝐿𝑏𝑈)))))))
7161, 62, 70sylc 62 . . . . . . . . . 10 (((𝑥Q𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃) ∧ (𝑚 ∈ ω ∧ ((𝑥 +Q0 ([⟨𝑚, 1o⟩] ~Q0 ·Q0 𝑞)) ∈ 𝐿 ∧ (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞)) ∈ 𝑈))) → ∃𝑏(𝑏 = (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞)) ∧ ∃𝑎(𝑎 = (𝑥 +Q0 ([⟨𝑚, 1o⟩] ~Q0 ·Q0 𝑞)) ∧ ((𝑥Q𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃) ∧ (𝑚 ∈ ω ∧ (𝑎𝐿𝑏𝑈))))))
72 19.42v 1918 . . . . . . . . . . 11 (∃𝑎(𝑏 = (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞)) ∧ (𝑎 = (𝑥 +Q0 ([⟨𝑚, 1o⟩] ~Q0 ·Q0 𝑞)) ∧ ((𝑥Q𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃) ∧ (𝑚 ∈ ω ∧ (𝑎𝐿𝑏𝑈))))) ↔ (𝑏 = (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞)) ∧ ∃𝑎(𝑎 = (𝑥 +Q0 ([⟨𝑚, 1o⟩] ~Q0 ·Q0 𝑞)) ∧ ((𝑥Q𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃) ∧ (𝑚 ∈ ω ∧ (𝑎𝐿𝑏𝑈))))))
7372exbii 1616 . . . . . . . . . 10 (∃𝑏𝑎(𝑏 = (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞)) ∧ (𝑎 = (𝑥 +Q0 ([⟨𝑚, 1o⟩] ~Q0 ·Q0 𝑞)) ∧ ((𝑥Q𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃) ∧ (𝑚 ∈ ω ∧ (𝑎𝐿𝑏𝑈))))) ↔ ∃𝑏(𝑏 = (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞)) ∧ ∃𝑎(𝑎 = (𝑥 +Q0 ([⟨𝑚, 1o⟩] ~Q0 ·Q0 𝑞)) ∧ ((𝑥Q𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃) ∧ (𝑚 ∈ ω ∧ (𝑎𝐿𝑏𝑈))))))
7471, 73sylibr 134 . . . . . . . . 9 (((𝑥Q𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃) ∧ (𝑚 ∈ ω ∧ ((𝑥 +Q0 ([⟨𝑚, 1o⟩] ~Q0 ·Q0 𝑞)) ∈ 𝐿 ∧ (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞)) ∈ 𝑈))) → ∃𝑏𝑎(𝑏 = (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞)) ∧ (𝑎 = (𝑥 +Q0 ([⟨𝑚, 1o⟩] ~Q0 ·Q0 𝑞)) ∧ ((𝑥Q𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃) ∧ (𝑚 ∈ ω ∧ (𝑎𝐿𝑏𝑈))))))
75 simprrl 539 . . . . . . . . . . . . . 14 (((𝑥Q𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃) ∧ (𝑚 ∈ ω ∧ (𝑎𝐿𝑏𝑈))) → 𝑎𝐿)
7675adantl 277 . . . . . . . . . . . . 13 (((𝑎 = (𝑥 +Q0 ([⟨𝑚, 1o⟩] ~Q0 ·Q0 𝑞)) ∧ 𝑏 = (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞))) ∧ ((𝑥Q𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃) ∧ (𝑚 ∈ ω ∧ (𝑎𝐿𝑏𝑈)))) → 𝑎𝐿)
77 simprrr 540 . . . . . . . . . . . . . . 15 (((𝑥Q𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃) ∧ (𝑚 ∈ ω ∧ (𝑎𝐿𝑏𝑈))) → 𝑏𝑈)
7877adantl 277 . . . . . . . . . . . . . 14 (((𝑎 = (𝑥 +Q0 ([⟨𝑚, 1o⟩] ~Q0 ·Q0 𝑞)) ∧ 𝑏 = (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞))) ∧ ((𝑥Q𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃) ∧ (𝑚 ∈ ω ∧ (𝑎𝐿𝑏𝑈)))) → 𝑏𝑈)
79 simpl 109 . . . . . . . . . . . . . . 15 (((𝑎 = (𝑥 +Q0 ([⟨𝑚, 1o⟩] ~Q0 ·Q0 𝑞)) ∧ 𝑏 = (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞))) ∧ ((𝑥Q𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃) ∧ (𝑚 ∈ ω ∧ (𝑎𝐿𝑏𝑈)))) → (𝑎 = (𝑥 +Q0 ([⟨𝑚, 1o⟩] ~Q0 ·Q0 𝑞)) ∧ 𝑏 = (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞))))
80 simprl2 1045 . . . . . . . . . . . . . . . 16 (((𝑎 = (𝑥 +Q0 ([⟨𝑚, 1o⟩] ~Q0 ·Q0 𝑞)) ∧ 𝑏 = (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞))) ∧ ((𝑥Q𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃) ∧ (𝑚 ∈ ω ∧ (𝑎𝐿𝑏𝑈)))) → 𝑞Q)
81 simprl3 1046 . . . . . . . . . . . . . . . 16 (((𝑎 = (𝑥 +Q0 ([⟨𝑚, 1o⟩] ~Q0 ·Q0 𝑞)) ∧ 𝑏 = (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞))) ∧ ((𝑥Q𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃) ∧ (𝑚 ∈ ω ∧ (𝑎𝐿𝑏𝑈)))) → (𝑞 +Q 𝑞) <Q 𝑃)
8280, 81jca 306 . . . . . . . . . . . . . . 15 (((𝑎 = (𝑥 +Q0 ([⟨𝑚, 1o⟩] ~Q0 ·Q0 𝑞)) ∧ 𝑏 = (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞))) ∧ ((𝑥Q𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃) ∧ (𝑚 ∈ ω ∧ (𝑎𝐿𝑏𝑈)))) → (𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃))
83 simprl1 1044 . . . . . . . . . . . . . . . 16 (((𝑎 = (𝑥 +Q0 ([⟨𝑚, 1o⟩] ~Q0 ·Q0 𝑞)) ∧ 𝑏 = (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞))) ∧ ((𝑥Q𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃) ∧ (𝑚 ∈ ω ∧ (𝑎𝐿𝑏𝑈)))) → 𝑥Q)
84 simprrl 539 . . . . . . . . . . . . . . . 16 (((𝑎 = (𝑥 +Q0 ([⟨𝑚, 1o⟩] ~Q0 ·Q0 𝑞)) ∧ 𝑏 = (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞))) ∧ ((𝑥Q𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃) ∧ (𝑚 ∈ ω ∧ (𝑎𝐿𝑏𝑈)))) → 𝑚 ∈ ω)
8583, 84jca 306 . . . . . . . . . . . . . . 15 (((𝑎 = (𝑥 +Q0 ([⟨𝑚, 1o⟩] ~Q0 ·Q0 𝑞)) ∧ 𝑏 = (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞))) ∧ ((𝑥Q𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃) ∧ (𝑚 ∈ ω ∧ (𝑎𝐿𝑏𝑈)))) → (𝑥Q𝑚 ∈ ω))
86 prarloclemcalc 7564 . . . . . . . . . . . . . . 15 (((𝑎 = (𝑥 +Q0 ([⟨𝑚, 1o⟩] ~Q0 ·Q0 𝑞)) ∧ 𝑏 = (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞))) ∧ ((𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃) ∧ (𝑥Q𝑚 ∈ ω))) → 𝑏 <Q (𝑎 +Q 𝑃))
8779, 82, 85, 86syl12anc 1247 . . . . . . . . . . . . . 14 (((𝑎 = (𝑥 +Q0 ([⟨𝑚, 1o⟩] ~Q0 ·Q0 𝑞)) ∧ 𝑏 = (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞))) ∧ ((𝑥Q𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃) ∧ (𝑚 ∈ ω ∧ (𝑎𝐿𝑏𝑈)))) → 𝑏 <Q (𝑎 +Q 𝑃))
8878, 87jca 306 . . . . . . . . . . . . 13 (((𝑎 = (𝑥 +Q0 ([⟨𝑚, 1o⟩] ~Q0 ·Q0 𝑞)) ∧ 𝑏 = (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞))) ∧ ((𝑥Q𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃) ∧ (𝑚 ∈ ω ∧ (𝑎𝐿𝑏𝑈)))) → (𝑏𝑈𝑏 <Q (𝑎 +Q 𝑃)))
8976, 88jca 306 . . . . . . . . . . . 12 (((𝑎 = (𝑥 +Q0 ([⟨𝑚, 1o⟩] ~Q0 ·Q0 𝑞)) ∧ 𝑏 = (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞))) ∧ ((𝑥Q𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃) ∧ (𝑚 ∈ ω ∧ (𝑎𝐿𝑏𝑈)))) → (𝑎𝐿 ∧ (𝑏𝑈𝑏 <Q (𝑎 +Q 𝑃))))
9089ancom1s 569 . . . . . . . . . . 11 (((𝑏 = (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞)) ∧ 𝑎 = (𝑥 +Q0 ([⟨𝑚, 1o⟩] ~Q0 ·Q0 𝑞))) ∧ ((𝑥Q𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃) ∧ (𝑚 ∈ ω ∧ (𝑎𝐿𝑏𝑈)))) → (𝑎𝐿 ∧ (𝑏𝑈𝑏 <Q (𝑎 +Q 𝑃))))
9190anasss 399 . . . . . . . . . 10 ((𝑏 = (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞)) ∧ (𝑎 = (𝑥 +Q0 ([⟨𝑚, 1o⟩] ~Q0 ·Q0 𝑞)) ∧ ((𝑥Q𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃) ∧ (𝑚 ∈ ω ∧ (𝑎𝐿𝑏𝑈))))) → (𝑎𝐿 ∧ (𝑏𝑈𝑏 <Q (𝑎 +Q 𝑃))))
92912eximi 1612 . . . . . . . . 9 (∃𝑏𝑎(𝑏 = (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞)) ∧ (𝑎 = (𝑥 +Q0 ([⟨𝑚, 1o⟩] ~Q0 ·Q0 𝑞)) ∧ ((𝑥Q𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃) ∧ (𝑚 ∈ ω ∧ (𝑎𝐿𝑏𝑈))))) → ∃𝑏𝑎(𝑎𝐿 ∧ (𝑏𝑈𝑏 <Q (𝑎 +Q 𝑃))))
9374, 92syl 14 . . . . . . . 8 (((𝑥Q𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃) ∧ (𝑚 ∈ ω ∧ ((𝑥 +Q0 ([⟨𝑚, 1o⟩] ~Q0 ·Q0 𝑞)) ∈ 𝐿 ∧ (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞)) ∈ 𝑈))) → ∃𝑏𝑎(𝑎𝐿 ∧ (𝑏𝑈𝑏 <Q (𝑎 +Q 𝑃))))
9493exlimiv 1609 . . . . . . 7 (∃𝑚((𝑥Q𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃) ∧ (𝑚 ∈ ω ∧ ((𝑥 +Q0 ([⟨𝑚, 1o⟩] ~Q0 ·Q0 𝑞)) ∈ 𝐿 ∧ (𝑥 +Q ([⟨(𝑚 +o 2o), 1o⟩] ~Q ·Q 𝑞)) ∈ 𝑈))) → ∃𝑏𝑎(𝑎𝐿 ∧ (𝑏𝑈𝑏 <Q (𝑎 +Q 𝑃))))
9553, 94syl 14 . . . . . 6 ((((𝑥Q𝑥𝐿) ∧ (𝑦Q𝑦𝑈) ∧ ((⟨𝐿, 𝑈⟩ ∈ P𝑃Q) ∧ (𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃))) ∧ (𝑛N ∧ (1o <N 𝑛𝑦 <Q (𝑥 +Q ([⟨𝑛, 1o⟩] ~Q ·Q 𝑞))))) → ∃𝑏𝑎(𝑎𝐿 ∧ (𝑏𝑈𝑏 <Q (𝑎 +Q 𝑃))))
9695exlimivv 1908 . . . . 5 (∃𝑞𝑛(((𝑥Q𝑥𝐿) ∧ (𝑦Q𝑦𝑈) ∧ ((⟨𝐿, 𝑈⟩ ∈ P𝑃Q) ∧ (𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃))) ∧ (𝑛N ∧ (1o <N 𝑛𝑦 <Q (𝑥 +Q ([⟨𝑛, 1o⟩] ~Q ·Q 𝑞))))) → ∃𝑏𝑎(𝑎𝐿 ∧ (𝑏𝑈𝑏 <Q (𝑎 +Q 𝑃))))
9796exlimivv 1908 . . . 4 (∃𝑥𝑦𝑞𝑛(((𝑥Q𝑥𝐿) ∧ (𝑦Q𝑦𝑈) ∧ ((⟨𝐿, 𝑈⟩ ∈ P𝑃Q) ∧ (𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃))) ∧ (𝑛N ∧ (1o <N 𝑛𝑦 <Q (𝑥 +Q ([⟨𝑛, 1o⟩] ~Q ·Q 𝑞))))) → ∃𝑏𝑎(𝑎𝐿 ∧ (𝑏𝑈𝑏 <Q (𝑎 +Q 𝑃))))
9817, 30, 973syl 17 . . 3 ((⟨𝐿, 𝑈⟩ ∈ P𝑃Q) → ∃𝑏𝑎(𝑎𝐿 ∧ (𝑏𝑈𝑏 <Q (𝑎 +Q 𝑃))))
99 excom 1675 . . 3 (∃𝑏𝑎(𝑎𝐿 ∧ (𝑏𝑈𝑏 <Q (𝑎 +Q 𝑃))) ↔ ∃𝑎𝑏(𝑎𝐿 ∧ (𝑏𝑈𝑏 <Q (𝑎 +Q 𝑃))))
10098, 99sylib 122 . 2 ((⟨𝐿, 𝑈⟩ ∈ P𝑃Q) → ∃𝑎𝑏(𝑎𝐿 ∧ (𝑏𝑈𝑏 <Q (𝑎 +Q 𝑃))))
101 19.42v 1918 . . . . 5 (∃𝑏(𝑎𝐿 ∧ (𝑏𝑈𝑏 <Q (𝑎 +Q 𝑃))) ↔ (𝑎𝐿 ∧ ∃𝑏(𝑏𝑈𝑏 <Q (𝑎 +Q 𝑃))))
102 df-rex 2478 . . . . . 6 (∃𝑏𝑈 𝑏 <Q (𝑎 +Q 𝑃) ↔ ∃𝑏(𝑏𝑈𝑏 <Q (𝑎 +Q 𝑃)))
103102anbi2i 457 . . . . 5 ((𝑎𝐿 ∧ ∃𝑏𝑈 𝑏 <Q (𝑎 +Q 𝑃)) ↔ (𝑎𝐿 ∧ ∃𝑏(𝑏𝑈𝑏 <Q (𝑎 +Q 𝑃))))
104101, 103bitr4i 187 . . . 4 (∃𝑏(𝑎𝐿 ∧ (𝑏𝑈𝑏 <Q (𝑎 +Q 𝑃))) ↔ (𝑎𝐿 ∧ ∃𝑏𝑈 𝑏 <Q (𝑎 +Q 𝑃)))
105104exbii 1616 . . 3 (∃𝑎𝑏(𝑎𝐿 ∧ (𝑏𝑈𝑏 <Q (𝑎 +Q 𝑃))) ↔ ∃𝑎(𝑎𝐿 ∧ ∃𝑏𝑈 𝑏 <Q (𝑎 +Q 𝑃)))
106 df-rex 2478 . . 3 (∃𝑎𝐿𝑏𝑈 𝑏 <Q (𝑎 +Q 𝑃) ↔ ∃𝑎(𝑎𝐿 ∧ ∃𝑏𝑈 𝑏 <Q (𝑎 +Q 𝑃)))
107105, 106bitr4i 187 . 2 (∃𝑎𝑏(𝑎𝐿 ∧ (𝑏𝑈𝑏 <Q (𝑎 +Q 𝑃))) ↔ ∃𝑎𝐿𝑏𝑈 𝑏 <Q (𝑎 +Q 𝑃))
108100, 107sylib 122 1 ((⟨𝐿, 𝑈⟩ ∈ P𝑃Q) → ∃𝑎𝐿𝑏𝑈 𝑏 <Q (𝑎 +Q 𝑃))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 980   = wceq 1364  wex 1503  wcel 2164  wrex 2473  cop 3622   class class class wbr 4030  ωcom 4623  (class class class)co 5919  1oc1o 6464  2oc2o 6465   +o coa 6468  [cec 6587  Ncnpi 7334   <N clti 7337   ~Q ceq 7341  Qcnq 7342   +Q cplq 7344   ·Q cmq 7345   <Q cltq 7347   ~Q0 ceq0 7348   +Q0 cplq0 7351   ·Q0 cmq0 7352  Pcnp 7353
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-iinf 4621
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-eprel 4321  df-id 4325  df-po 4328  df-iso 4329  df-iord 4398  df-on 4400  df-suc 4403  df-iom 4624  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-recs 6360  df-irdg 6425  df-1o 6471  df-2o 6472  df-oadd 6475  df-omul 6476  df-er 6589  df-ec 6591  df-qs 6595  df-ni 7366  df-pli 7367  df-mi 7368  df-lti 7369  df-plpq 7406  df-mpq 7407  df-enq 7409  df-nqqs 7410  df-plqqs 7411  df-mqqs 7412  df-1nqqs 7413  df-rq 7414  df-ltnqqs 7415  df-enq0 7486  df-nq0 7487  df-0nq0 7488  df-plq0 7489  df-mq0 7490  df-inp 7528
This theorem is referenced by:  prarloc2  7566  addlocpr  7598  prmuloc  7628  ltaddpr  7659  ltexprlemloc  7669  ltexprlemrl  7672  ltexprlemru  7674
  Copyright terms: Public domain W3C validator