ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  simpl2l GIF version

Theorem simpl2l 1053
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simpl2l (((𝜒 ∧ (𝜑𝜓) ∧ 𝜃) ∧ 𝜏) → 𝜑)

Proof of Theorem simpl2l
StepHypRef Expression
1 simp2l 1026 . 2 ((𝜒 ∧ (𝜑𝜓) ∧ 𝜃) → 𝜑)
21adantr 276 1 (((𝜒 ∧ (𝜑𝜓) ∧ 𝜃) ∧ 𝜏) → 𝜑)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 981
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117  df-3an 983
This theorem is referenced by:  xaddass  9998  swrdsbslen  11127  swrdspsleq  11128  xrbdtri  11631  pockthg  12724
  Copyright terms: Public domain W3C validator