| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > simp1r | GIF version | ||
| Description: Simplification of triple conjunction. (Contributed by NM, 9-Nov-2011.) |
| Ref | Expression |
|---|---|
| simp1r | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒 ∧ 𝜃) → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 110 | . 2 ⊢ ((𝜑 ∧ 𝜓) → 𝜓) | |
| 2 | 1 | 3ad2ant1 1042 | 1 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒 ∧ 𝜃) → 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 1002 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 |
| This theorem is referenced by: simpl1r 1073 simpr1r 1079 simp11r 1133 simp21r 1139 simp31r 1145 vtoclgft 2851 en2lp 4646 funprg 5371 nnsucsssuc 6646 ecopovtrn 6787 ecopovtrng 6790 addassnqg 7577 distrnqg 7582 ltsonq 7593 ltanqg 7595 ltmnqg 7596 distrnq0 7654 addassnq0 7657 prarloclem5 7695 recexprlem1ssl 7828 recexprlem1ssu 7829 mulasssrg 7953 distrsrg 7954 lttrsr 7957 ltsosr 7959 ltasrg 7965 mulextsr1lem 7975 mulextsr1 7976 axmulass 8068 axdistr 8069 dmdcanap 8877 lt2msq1 9040 lediv2 9046 xaddass2 10074 xlt2add 10084 modqdi 10622 expaddzaplem 10812 expaddzap 10813 expmulzap 10815 swrdspsleq 11207 pfxeq 11236 bdtrilem 11758 xrbdtri 11795 bitsfzo 12474 prmexpb 12681 4sqlem18 12939 mgmsscl 13402 subgabl 13877 cnptoprest 14921 ssblps 15107 ssbl 15108 rplogbchbase 15632 rplogbreexp 15635 relogbcxpbap 15647 lgssq 15727 uhgr2edg 16012 |
| Copyright terms: Public domain | W3C validator |