Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > simp1r | GIF version |
Description: Simplification of triple conjunction. (Contributed by NM, 9-Nov-2011.) |
Ref | Expression |
---|---|
simp1r | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒 ∧ 𝜃) → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 109 | . 2 ⊢ ((𝜑 ∧ 𝜓) → 𝜓) | |
2 | 1 | 3ad2ant1 1003 | 1 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒 ∧ 𝜃) → 𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∧ w3a 963 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 df-3an 965 |
This theorem is referenced by: simpl1r 1034 simpr1r 1040 simp11r 1094 simp21r 1100 simp31r 1106 vtoclgft 2762 en2lp 4511 funprg 5217 nnsucsssuc 6432 ecopovtrn 6570 ecopovtrng 6573 addassnqg 7285 distrnqg 7290 ltsonq 7301 ltanqg 7303 ltmnqg 7304 distrnq0 7362 addassnq0 7365 prarloclem5 7403 recexprlem1ssl 7536 recexprlem1ssu 7537 mulasssrg 7661 distrsrg 7662 lttrsr 7665 ltsosr 7667 ltasrg 7673 mulextsr1lem 7683 mulextsr1 7684 axmulass 7776 axdistr 7777 dmdcanap 8578 lt2msq1 8739 lediv2 8745 xaddass2 9756 xlt2add 9766 modqdi 10273 expaddzaplem 10444 expaddzap 10445 expmulzap 10447 bdtrilem 11120 xrbdtri 11155 prmexpb 12005 cnptoprest 12599 ssblps 12785 ssbl 12786 rplogbchbase 13227 rplogbreexp 13230 relogbcxpbap 13242 |
Copyright terms: Public domain | W3C validator |