| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > simp1r | GIF version | ||
| Description: Simplification of triple conjunction. (Contributed by NM, 9-Nov-2011.) |
| Ref | Expression |
|---|---|
| simp1r | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒 ∧ 𝜃) → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 110 | . 2 ⊢ ((𝜑 ∧ 𝜓) → 𝜓) | |
| 2 | 1 | 3ad2ant1 1021 | 1 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒 ∧ 𝜃) → 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 981 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 983 |
| This theorem is referenced by: simpl1r 1052 simpr1r 1058 simp11r 1112 simp21r 1118 simp31r 1124 vtoclgft 2825 en2lp 4607 funprg 5330 nnsucsssuc 6588 ecopovtrn 6729 ecopovtrng 6732 addassnqg 7508 distrnqg 7513 ltsonq 7524 ltanqg 7526 ltmnqg 7527 distrnq0 7585 addassnq0 7588 prarloclem5 7626 recexprlem1ssl 7759 recexprlem1ssu 7760 mulasssrg 7884 distrsrg 7885 lttrsr 7888 ltsosr 7890 ltasrg 7896 mulextsr1lem 7906 mulextsr1 7907 axmulass 7999 axdistr 8000 dmdcanap 8808 lt2msq1 8971 lediv2 8977 xaddass2 10005 xlt2add 10015 modqdi 10550 expaddzaplem 10740 expaddzap 10741 expmulzap 10743 swrdspsleq 11134 pfxeq 11161 bdtrilem 11600 xrbdtri 11637 bitsfzo 12316 prmexpb 12523 4sqlem18 12781 mgmsscl 13243 subgabl 13718 cnptoprest 14761 ssblps 14947 ssbl 14948 rplogbchbase 15472 rplogbreexp 15475 relogbcxpbap 15487 lgssq 15567 |
| Copyright terms: Public domain | W3C validator |