| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > simp1r | GIF version | ||
| Description: Simplification of triple conjunction. (Contributed by NM, 9-Nov-2011.) |
| Ref | Expression |
|---|---|
| simp1r | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒 ∧ 𝜃) → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 110 | . 2 ⊢ ((𝜑 ∧ 𝜓) → 𝜓) | |
| 2 | 1 | 3ad2ant1 1020 | 1 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒 ∧ 𝜃) → 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 980 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 982 |
| This theorem is referenced by: simpl1r 1051 simpr1r 1057 simp11r 1111 simp21r 1117 simp31r 1123 vtoclgft 2814 en2lp 4591 funprg 5309 nnsucsssuc 6559 ecopovtrn 6700 ecopovtrng 6703 addassnqg 7468 distrnqg 7473 ltsonq 7484 ltanqg 7486 ltmnqg 7487 distrnq0 7545 addassnq0 7548 prarloclem5 7586 recexprlem1ssl 7719 recexprlem1ssu 7720 mulasssrg 7844 distrsrg 7845 lttrsr 7848 ltsosr 7850 ltasrg 7856 mulextsr1lem 7866 mulextsr1 7867 axmulass 7959 axdistr 7960 dmdcanap 8768 lt2msq1 8931 lediv2 8937 xaddass2 9964 xlt2add 9974 modqdi 10503 expaddzaplem 10693 expaddzap 10694 expmulzap 10696 bdtrilem 11423 xrbdtri 11460 bitsfzo 12139 prmexpb 12346 4sqlem18 12604 mgmsscl 13065 subgabl 13540 cnptoprest 14583 ssblps 14769 ssbl 14770 rplogbchbase 15294 rplogbreexp 15297 relogbcxpbap 15309 lgssq 15389 |
| Copyright terms: Public domain | W3C validator |