![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > simp1r | GIF version |
Description: Simplification of triple conjunction. (Contributed by NM, 9-Nov-2011.) |
Ref | Expression |
---|---|
simp1r | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒 ∧ 𝜃) → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 110 | . 2 ⊢ ((𝜑 ∧ 𝜓) → 𝜓) | |
2 | 1 | 3ad2ant1 1020 | 1 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒 ∧ 𝜃) → 𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 980 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 df-3an 982 |
This theorem is referenced by: simpl1r 1051 simpr1r 1057 simp11r 1111 simp21r 1117 simp31r 1123 vtoclgft 2810 en2lp 4586 funprg 5304 nnsucsssuc 6545 ecopovtrn 6686 ecopovtrng 6689 addassnqg 7442 distrnqg 7447 ltsonq 7458 ltanqg 7460 ltmnqg 7461 distrnq0 7519 addassnq0 7522 prarloclem5 7560 recexprlem1ssl 7693 recexprlem1ssu 7694 mulasssrg 7818 distrsrg 7819 lttrsr 7822 ltsosr 7824 ltasrg 7830 mulextsr1lem 7840 mulextsr1 7841 axmulass 7933 axdistr 7934 dmdcanap 8741 lt2msq1 8904 lediv2 8910 xaddass2 9936 xlt2add 9946 modqdi 10463 expaddzaplem 10653 expaddzap 10654 expmulzap 10656 bdtrilem 11382 xrbdtri 11419 prmexpb 12289 4sqlem18 12546 mgmsscl 12944 subgabl 13402 cnptoprest 14407 ssblps 14593 ssbl 14594 rplogbchbase 15082 rplogbreexp 15085 relogbcxpbap 15097 lgssq 15156 |
Copyright terms: Public domain | W3C validator |