Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > simp1r | GIF version |
Description: Simplification of triple conjunction. (Contributed by NM, 9-Nov-2011.) |
Ref | Expression |
---|---|
simp1r | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒 ∧ 𝜃) → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 109 | . 2 ⊢ ((𝜑 ∧ 𝜓) → 𝜓) | |
2 | 1 | 3ad2ant1 1008 | 1 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒 ∧ 𝜃) → 𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∧ w3a 968 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 df-3an 970 |
This theorem is referenced by: simpl1r 1039 simpr1r 1045 simp11r 1099 simp21r 1105 simp31r 1111 vtoclgft 2776 en2lp 4531 funprg 5238 nnsucsssuc 6460 ecopovtrn 6598 ecopovtrng 6601 addassnqg 7323 distrnqg 7328 ltsonq 7339 ltanqg 7341 ltmnqg 7342 distrnq0 7400 addassnq0 7403 prarloclem5 7441 recexprlem1ssl 7574 recexprlem1ssu 7575 mulasssrg 7699 distrsrg 7700 lttrsr 7703 ltsosr 7705 ltasrg 7711 mulextsr1lem 7721 mulextsr1 7722 axmulass 7814 axdistr 7815 dmdcanap 8618 lt2msq1 8780 lediv2 8786 xaddass2 9806 xlt2add 9816 modqdi 10327 expaddzaplem 10498 expaddzap 10499 expmulzap 10501 bdtrilem 11180 xrbdtri 11217 prmexpb 12083 mgmsscl 12592 cnptoprest 12879 ssblps 13065 ssbl 13066 rplogbchbase 13508 rplogbreexp 13511 relogbcxpbap 13523 lgssq 13581 |
Copyright terms: Public domain | W3C validator |