| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > simp1r | GIF version | ||
| Description: Simplification of triple conjunction. (Contributed by NM, 9-Nov-2011.) | 
| Ref | Expression | 
|---|---|
| simp1r | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒 ∧ 𝜃) → 𝜓) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | simpr 110 | . 2 ⊢ ((𝜑 ∧ 𝜓) → 𝜓) | |
| 2 | 1 | 3ad2ant1 1020 | 1 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒 ∧ 𝜃) → 𝜓) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 980 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 | 
| This theorem is referenced by: simpl1r 1051 simpr1r 1057 simp11r 1111 simp21r 1117 simp31r 1123 vtoclgft 2814 en2lp 4590 funprg 5308 nnsucsssuc 6550 ecopovtrn 6691 ecopovtrng 6694 addassnqg 7449 distrnqg 7454 ltsonq 7465 ltanqg 7467 ltmnqg 7468 distrnq0 7526 addassnq0 7529 prarloclem5 7567 recexprlem1ssl 7700 recexprlem1ssu 7701 mulasssrg 7825 distrsrg 7826 lttrsr 7829 ltsosr 7831 ltasrg 7837 mulextsr1lem 7847 mulextsr1 7848 axmulass 7940 axdistr 7941 dmdcanap 8749 lt2msq1 8912 lediv2 8918 xaddass2 9945 xlt2add 9955 modqdi 10484 expaddzaplem 10674 expaddzap 10675 expmulzap 10677 bdtrilem 11404 xrbdtri 11441 bitsfzo 12119 prmexpb 12319 4sqlem18 12577 mgmsscl 13004 subgabl 13462 cnptoprest 14475 ssblps 14661 ssbl 14662 rplogbchbase 15186 rplogbreexp 15189 relogbcxpbap 15201 lgssq 15281 | 
| Copyright terms: Public domain | W3C validator |