ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  simpr2r GIF version

Theorem simpr2r 1003
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simpr2r ((𝜏 ∧ (𝜒 ∧ (𝜑𝜓) ∧ 𝜃)) → 𝜓)

Proof of Theorem simpr2r
StepHypRef Expression
1 simp2r 970 . 2 ((𝜒 ∧ (𝜑𝜓) ∧ 𝜃) → 𝜓)
21adantl 271 1 ((𝜏 ∧ (𝜒 ∧ (𝜑𝜓) ∧ 𝜃)) → 𝜓)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  w3a 924
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106
This theorem depends on definitions:  df-bi 115  df-3an 926
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator