| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > simp2r | GIF version | ||
| Description: Simplification of triple conjunction. (Contributed by NM, 9-Nov-2011.) |
| Ref | Expression |
|---|---|
| simp2r | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 110 | . 2 ⊢ ((𝜓 ∧ 𝜒) → 𝜒) | |
| 2 | 1 | 3ad2ant2 1021 | 1 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜒) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 980 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 982 |
| This theorem is referenced by: simpl2r 1053 simpr2r 1059 simp12r 1113 simp22r 1119 simp32r 1125 issod 4355 funprg 5309 fsnunf 5765 f1oiso2 5877 tfrlemibxssdm 6394 ecopovtrn 6700 ecopovtrng 6703 dftap2 7336 addassnqg 7468 ltsonq 7484 ltanqg 7486 ltmnqg 7487 addassnq0 7548 recexprlem1ssl 7719 mulasssrg 7844 distrsrg 7845 lttrsr 7848 ltsosr 7850 ltasrg 7856 mulextsr1lem 7866 mulextsr1 7867 axmulass 7959 axdistr 7960 dmdcanap 8768 lediv2 8937 ltdiv23 8938 lediv23 8939 xaddass2 9964 xlt2add 9974 expaddzaplem 10693 expaddzap 10694 expmulzap 10696 expdivap 10701 leisorel 10948 bdtrilem 11423 xrbdtri 11460 fldivndvdslt 12121 prmexpb 12346 pcpremul 12489 pcdiv 12498 pcqmul 12499 pcqdiv 12503 4sqlem12 12598 f1ocpbllem 13014 ercpbl 13035 erlecpbl 13036 cmn4 13513 ablsub4 13521 abladdsub4 13522 cnptoprest 14583 ssblps 14769 ssbl 14770 tgqioo 14899 plyadd 15095 plymul 15096 rplogbchbase 15294 |
| Copyright terms: Public domain | W3C validator |