| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > simp2r | GIF version | ||
| Description: Simplification of triple conjunction. (Contributed by NM, 9-Nov-2011.) |
| Ref | Expression |
|---|---|
| simp2r | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 110 | . 2 ⊢ ((𝜓 ∧ 𝜒) → 𝜒) | |
| 2 | 1 | 3ad2ant2 1043 | 1 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜒) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 1002 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 |
| This theorem is referenced by: simpl2r 1075 simpr2r 1081 simp12r 1135 simp22r 1141 simp32r 1147 issod 4407 funprg 5367 fsnunf 5832 f1oiso2 5944 tfrlemibxssdm 6463 ecopovtrn 6769 ecopovtrng 6772 dftap2 7425 addassnqg 7557 ltsonq 7573 ltanqg 7575 ltmnqg 7576 addassnq0 7637 recexprlem1ssl 7808 mulasssrg 7933 distrsrg 7934 lttrsr 7937 ltsosr 7939 ltasrg 7945 mulextsr1lem 7955 mulextsr1 7956 axmulass 8048 axdistr 8049 dmdcanap 8857 lediv2 9026 ltdiv23 9027 lediv23 9028 xaddass2 10054 xlt2add 10064 expaddzaplem 10791 expaddzap 10792 expmulzap 10794 expdivap 10799 leisorel 11046 swrdspsleq 11185 pfxeq 11214 ccatopth2 11235 bdtrilem 11736 xrbdtri 11773 fldivndvdslt 12434 prmexpb 12659 pcpremul 12802 pcdiv 12811 pcqmul 12812 pcqdiv 12816 4sqlem12 12911 f1ocpbllem 13329 ercpbl 13350 erlecpbl 13351 cmn4 13828 ablsub4 13836 abladdsub4 13837 cnptoprest 14898 ssblps 15084 ssbl 15085 tgqioo 15214 plyadd 15410 plymul 15411 rplogbchbase 15609 |
| Copyright terms: Public domain | W3C validator |