Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > simp2r | GIF version |
Description: Simplification of triple conjunction. (Contributed by NM, 9-Nov-2011.) |
Ref | Expression |
---|---|
simp2r | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 110 | . 2 ⊢ ((𝜓 ∧ 𝜒) → 𝜒) | |
2 | 1 | 3ad2ant2 1019 | 1 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜒) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 978 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 df-3an 980 |
This theorem is referenced by: simpl2r 1051 simpr2r 1057 simp12r 1111 simp22r 1117 simp32r 1123 issod 4313 funprg 5258 fsnunf 5708 f1oiso2 5818 tfrlemibxssdm 6318 ecopovtrn 6622 ecopovtrng 6625 addassnqg 7356 ltsonq 7372 ltanqg 7374 ltmnqg 7375 addassnq0 7436 recexprlem1ssl 7607 mulasssrg 7732 distrsrg 7733 lttrsr 7736 ltsosr 7738 ltasrg 7744 mulextsr1lem 7754 mulextsr1 7755 axmulass 7847 axdistr 7848 dmdcanap 8651 lediv2 8819 ltdiv23 8820 lediv23 8821 xaddass2 9839 xlt2add 9849 expaddzaplem 10531 expaddzap 10532 expmulzap 10534 expdivap 10539 leisorel 10783 bdtrilem 11213 xrbdtri 11250 fldivndvdslt 11905 prmexpb 12116 pcpremul 12258 pcdiv 12267 pcqmul 12268 pcqdiv 12272 cmn4 12904 ablsub4 12912 abladdsub4 12913 cnptoprest 13290 ssblps 13476 ssbl 13477 tgqioo 13598 rplogbchbase 13919 |
Copyright terms: Public domain | W3C validator |