| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > simp2r | GIF version | ||
| Description: Simplification of triple conjunction. (Contributed by NM, 9-Nov-2011.) |
| Ref | Expression |
|---|---|
| simp2r | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 110 | . 2 ⊢ ((𝜓 ∧ 𝜒) → 𝜒) | |
| 2 | 1 | 3ad2ant2 1022 | 1 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜒) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 981 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 983 |
| This theorem is referenced by: simpl2r 1054 simpr2r 1060 simp12r 1114 simp22r 1120 simp32r 1126 issod 4371 funprg 5330 fsnunf 5794 f1oiso2 5906 tfrlemibxssdm 6423 ecopovtrn 6729 ecopovtrng 6732 dftap2 7376 addassnqg 7508 ltsonq 7524 ltanqg 7526 ltmnqg 7527 addassnq0 7588 recexprlem1ssl 7759 mulasssrg 7884 distrsrg 7885 lttrsr 7888 ltsosr 7890 ltasrg 7896 mulextsr1lem 7906 mulextsr1 7907 axmulass 7999 axdistr 8000 dmdcanap 8808 lediv2 8977 ltdiv23 8978 lediv23 8979 xaddass2 10005 xlt2add 10015 expaddzaplem 10740 expaddzap 10741 expmulzap 10743 expdivap 10748 leisorel 10995 swrdspsleq 11134 pfxeq 11161 bdtrilem 11600 xrbdtri 11637 fldivndvdslt 12298 prmexpb 12523 pcpremul 12666 pcdiv 12675 pcqmul 12676 pcqdiv 12680 4sqlem12 12775 f1ocpbllem 13192 ercpbl 13213 erlecpbl 13214 cmn4 13691 ablsub4 13699 abladdsub4 13700 cnptoprest 14761 ssblps 14947 ssbl 14948 tgqioo 15077 plyadd 15273 plymul 15274 rplogbchbase 15472 |
| Copyright terms: Public domain | W3C validator |