| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > simp2r | GIF version | ||
| Description: Simplification of triple conjunction. (Contributed by NM, 9-Nov-2011.) |
| Ref | Expression |
|---|---|
| simp2r | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 110 | . 2 ⊢ ((𝜓 ∧ 𝜒) → 𝜒) | |
| 2 | 1 | 3ad2ant2 1043 | 1 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜒) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 1002 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 |
| This theorem is referenced by: simpl2r 1075 simpr2r 1081 simp12r 1135 simp22r 1141 simp32r 1147 issod 4410 funprg 5371 fsnunf 5843 f1oiso2 5957 tfrlemibxssdm 6479 ecopovtrn 6787 ecopovtrng 6790 dftap2 7445 addassnqg 7577 ltsonq 7593 ltanqg 7595 ltmnqg 7596 addassnq0 7657 recexprlem1ssl 7828 mulasssrg 7953 distrsrg 7954 lttrsr 7957 ltsosr 7959 ltasrg 7965 mulextsr1lem 7975 mulextsr1 7976 axmulass 8068 axdistr 8069 dmdcanap 8877 lediv2 9046 ltdiv23 9047 lediv23 9048 xaddass2 10074 xlt2add 10084 expaddzaplem 10812 expaddzap 10813 expmulzap 10815 expdivap 10820 leisorel 11067 swrdspsleq 11207 pfxeq 11236 ccatopth2 11257 bdtrilem 11758 xrbdtri 11795 fldivndvdslt 12456 prmexpb 12681 pcpremul 12824 pcdiv 12833 pcqmul 12834 pcqdiv 12838 4sqlem12 12933 f1ocpbllem 13351 ercpbl 13372 erlecpbl 13373 cmn4 13850 ablsub4 13858 abladdsub4 13859 cnptoprest 14921 ssblps 15107 ssbl 15108 tgqioo 15237 plyadd 15433 plymul 15434 rplogbchbase 15632 |
| Copyright terms: Public domain | W3C validator |