Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > simp2r | GIF version |
Description: Simplification of triple conjunction. (Contributed by NM, 9-Nov-2011.) |
Ref | Expression |
---|---|
simp2r | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 109 | . 2 ⊢ ((𝜓 ∧ 𝜒) → 𝜒) | |
2 | 1 | 3ad2ant2 1009 | 1 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜒) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∧ w3a 968 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 df-3an 970 |
This theorem is referenced by: simpl2r 1041 simpr2r 1047 simp12r 1101 simp22r 1107 simp32r 1113 issod 4297 funprg 5238 fsnunf 5685 f1oiso2 5795 tfrlemibxssdm 6295 ecopovtrn 6598 ecopovtrng 6601 addassnqg 7323 ltsonq 7339 ltanqg 7341 ltmnqg 7342 addassnq0 7403 recexprlem1ssl 7574 mulasssrg 7699 distrsrg 7700 lttrsr 7703 ltsosr 7705 ltasrg 7711 mulextsr1lem 7721 mulextsr1 7722 axmulass 7814 axdistr 7815 dmdcanap 8618 lediv2 8786 ltdiv23 8787 lediv23 8788 xaddass2 9806 xlt2add 9816 expaddzaplem 10498 expaddzap 10499 expmulzap 10501 expdivap 10506 leisorel 10750 bdtrilem 11180 xrbdtri 11217 fldivndvdslt 11872 prmexpb 12083 pcpremul 12225 pcdiv 12234 pcqmul 12235 pcqdiv 12239 cnptoprest 12879 ssblps 13065 ssbl 13066 tgqioo 13187 rplogbchbase 13508 |
Copyright terms: Public domain | W3C validator |