ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  syl11 GIF version

Theorem syl11 31
Description: A syllogism inference. Commuted form of an instance of syl 14. (Contributed by BJ, 25-Oct-2021.)
Hypotheses
Ref Expression
syl11.1 (𝜑 → (𝜓𝜒))
syl11.2 (𝜃𝜑)
Assertion
Ref Expression
syl11 (𝜓 → (𝜃𝜒))

Proof of Theorem syl11
StepHypRef Expression
1 syl11.2 . . 3 (𝜃𝜑)
2 syl11.1 . . 3 (𝜑 → (𝜓𝜒))
31, 2syl 14 . 2 (𝜃 → (𝜓𝜒))
43com12 30 1 (𝜓 → (𝜃𝜒))
Colors of variables: wff set class
Syntax hints:  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7
This theorem is referenced by:  ssprsseq  3829  elpr2elpr  3853  elovmporab  6204  elovmporab1w  6205  updjud  7245  pfxccatin12  11260  alzdvds  12360  pcmptcl  12860  fiinopn  14672  cnmptcom  14966  metcnp3  15179  ausgrusgrben  15960  usgredg4  16007
  Copyright terms: Public domain W3C validator