ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pcmptcl GIF version

Theorem pcmptcl 12831
Description: Closure for the prime power map. (Contributed by Mario Carneiro, 12-Mar-2014.)
Hypotheses
Ref Expression
pcmpt.1 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (𝑛𝐴), 1))
pcmpt.2 (𝜑 → ∀𝑛 ∈ ℙ 𝐴 ∈ ℕ0)
Assertion
Ref Expression
pcmptcl (𝜑 → (𝐹:ℕ⟶ℕ ∧ seq1( · , 𝐹):ℕ⟶ℕ))

Proof of Theorem pcmptcl
Dummy variables 𝑘 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pcmpt.2 . . . 4 (𝜑 → ∀𝑛 ∈ ℙ 𝐴 ∈ ℕ0)
2 pm2.27 40 . . . . . . . 8 (𝑛 ∈ ℙ → ((𝑛 ∈ ℙ → 𝐴 ∈ ℕ0) → 𝐴 ∈ ℕ0))
3 iftrue 3587 . . . . . . . . . . 11 (𝑛 ∈ ℙ → if(𝑛 ∈ ℙ, (𝑛𝐴), 1) = (𝑛𝐴))
43adantr 276 . . . . . . . . . 10 ((𝑛 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → if(𝑛 ∈ ℙ, (𝑛𝐴), 1) = (𝑛𝐴))
5 prmnn 12598 . . . . . . . . . . 11 (𝑛 ∈ ℙ → 𝑛 ∈ ℕ)
6 nnexpcl 10741 . . . . . . . . . . 11 ((𝑛 ∈ ℕ ∧ 𝐴 ∈ ℕ0) → (𝑛𝐴) ∈ ℕ)
75, 6sylan 283 . . . . . . . . . 10 ((𝑛 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → (𝑛𝐴) ∈ ℕ)
84, 7eqeltrd 2286 . . . . . . . . 9 ((𝑛 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → if(𝑛 ∈ ℙ, (𝑛𝐴), 1) ∈ ℕ)
98ex 115 . . . . . . . 8 (𝑛 ∈ ℙ → (𝐴 ∈ ℕ0 → if(𝑛 ∈ ℙ, (𝑛𝐴), 1) ∈ ℕ))
102, 9syld 45 . . . . . . 7 (𝑛 ∈ ℙ → ((𝑛 ∈ ℙ → 𝐴 ∈ ℕ0) → if(𝑛 ∈ ℙ, (𝑛𝐴), 1) ∈ ℕ))
11 iffalse 3590 . . . . . . . . 9 𝑛 ∈ ℙ → if(𝑛 ∈ ℙ, (𝑛𝐴), 1) = 1)
12 1nn 9089 . . . . . . . . 9 1 ∈ ℕ
1311, 12eqeltrdi 2300 . . . . . . . 8 𝑛 ∈ ℙ → if(𝑛 ∈ ℙ, (𝑛𝐴), 1) ∈ ℕ)
1413a1d 22 . . . . . . 7 𝑛 ∈ ℙ → ((𝑛 ∈ ℙ → 𝐴 ∈ ℕ0) → if(𝑛 ∈ ℙ, (𝑛𝐴), 1) ∈ ℕ))
1510, 14jaoi 720 . . . . . 6 ((𝑛 ∈ ℙ ∨ ¬ 𝑛 ∈ ℙ) → ((𝑛 ∈ ℙ → 𝐴 ∈ ℕ0) → if(𝑛 ∈ ℙ, (𝑛𝐴), 1) ∈ ℕ))
16 prmdc 12618 . . . . . . 7 (𝑛 ∈ ℕ → DECID 𝑛 ∈ ℙ)
17 exmiddc 840 . . . . . . 7 (DECID 𝑛 ∈ ℙ → (𝑛 ∈ ℙ ∨ ¬ 𝑛 ∈ ℙ))
1816, 17syl 14 . . . . . 6 (𝑛 ∈ ℕ → (𝑛 ∈ ℙ ∨ ¬ 𝑛 ∈ ℙ))
1915, 18syl11 31 . . . . 5 ((𝑛 ∈ ℙ → 𝐴 ∈ ℕ0) → (𝑛 ∈ ℕ → if(𝑛 ∈ ℙ, (𝑛𝐴), 1) ∈ ℕ))
2019ralimi2 2570 . . . 4 (∀𝑛 ∈ ℙ 𝐴 ∈ ℕ0 → ∀𝑛 ∈ ℕ if(𝑛 ∈ ℙ, (𝑛𝐴), 1) ∈ ℕ)
211, 20syl 14 . . 3 (𝜑 → ∀𝑛 ∈ ℕ if(𝑛 ∈ ℙ, (𝑛𝐴), 1) ∈ ℕ)
22 pcmpt.1 . . . 4 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (𝑛𝐴), 1))
2322fmpt 5758 . . 3 (∀𝑛 ∈ ℕ if(𝑛 ∈ ℙ, (𝑛𝐴), 1) ∈ ℕ ↔ 𝐹:ℕ⟶ℕ)
2421, 23sylib 122 . 2 (𝜑𝐹:ℕ⟶ℕ)
25 nnuz 9726 . . 3 ℕ = (ℤ‘1)
26 1zzd 9441 . . 3 (𝜑 → 1 ∈ ℤ)
2724ffvelcdmda 5743 . . 3 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) ∈ ℕ)
28 nnmulcl 9099 . . . 4 ((𝑘 ∈ ℕ ∧ 𝑝 ∈ ℕ) → (𝑘 · 𝑝) ∈ ℕ)
2928adantl 277 . . 3 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑝 ∈ ℕ)) → (𝑘 · 𝑝) ∈ ℕ)
3025, 26, 27, 29seqf 10653 . 2 (𝜑 → seq1( · , 𝐹):ℕ⟶ℕ)
3124, 30jca 306 1 (𝜑 → (𝐹:ℕ⟶ℕ ∧ seq1( · , 𝐹):ℕ⟶ℕ))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wo 712  DECID wdc 838   = wceq 1375  wcel 2180  wral 2488  ifcif 3582  cmpt 4124  wf 5290  (class class class)co 5974  1c1 7968   · cmul 7972  cn 9078  0cn0 9337  seqcseq 10636  cexp 10727  cprime 12595
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-coll 4178  ax-sep 4181  ax-nul 4189  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-setind 4606  ax-iinf 4657  ax-cnex 8058  ax-resscn 8059  ax-1cn 8060  ax-1re 8061  ax-icn 8062  ax-addcl 8063  ax-addrcl 8064  ax-mulcl 8065  ax-mulrcl 8066  ax-addcom 8067  ax-mulcom 8068  ax-addass 8069  ax-mulass 8070  ax-distr 8071  ax-i2m1 8072  ax-0lt1 8073  ax-1rid 8074  ax-0id 8075  ax-rnegex 8076  ax-precex 8077  ax-cnre 8078  ax-pre-ltirr 8079  ax-pre-ltwlin 8080  ax-pre-lttrn 8081  ax-pre-apti 8082  ax-pre-ltadd 8083  ax-pre-mulgt0 8084  ax-pre-mulext 8085  ax-arch 8086  ax-caucvg 8087
This theorem depends on definitions:  df-bi 117  df-stab 835  df-dc 839  df-3or 984  df-3an 985  df-tru 1378  df-fal 1381  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-nel 2476  df-ral 2493  df-rex 2494  df-reu 2495  df-rmo 2496  df-rab 2497  df-v 2781  df-sbc 3009  df-csb 3105  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-nul 3472  df-if 3583  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-int 3903  df-iun 3946  df-br 4063  df-opab 4125  df-mpt 4126  df-tr 4162  df-id 4361  df-po 4364  df-iso 4365  df-iord 4434  df-on 4436  df-ilim 4437  df-suc 4439  df-iom 4660  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-ima 4709  df-iota 5254  df-fun 5296  df-fn 5297  df-f 5298  df-f1 5299  df-fo 5300  df-f1o 5301  df-fv 5302  df-riota 5927  df-ov 5977  df-oprab 5978  df-mpo 5979  df-1st 6256  df-2nd 6257  df-recs 6421  df-frec 6507  df-1o 6532  df-2o 6533  df-er 6650  df-en 6858  df-fin 6860  df-pnf 8151  df-mnf 8152  df-xr 8153  df-ltxr 8154  df-le 8155  df-sub 8287  df-neg 8288  df-reap 8690  df-ap 8697  df-div 8788  df-inn 9079  df-2 9137  df-3 9138  df-4 9139  df-n0 9338  df-z 9415  df-uz 9691  df-q 9783  df-rp 9818  df-fz 10173  df-fl 10457  df-mod 10512  df-seqfrec 10637  df-exp 10728  df-cj 11319  df-re 11320  df-im 11321  df-rsqrt 11475  df-abs 11476  df-dvds 12265  df-prm 12596
This theorem is referenced by:  pcmpt  12832  pcmpt2  12833  pcmptdvds  12834  pcprod  12835  1arithlem4  12855
  Copyright terms: Public domain W3C validator