Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > pcmptcl | GIF version |
Description: Closure for the prime power map. (Contributed by Mario Carneiro, 12-Mar-2014.) |
Ref | Expression |
---|---|
pcmpt.1 | ⊢ 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (𝑛↑𝐴), 1)) |
pcmpt.2 | ⊢ (𝜑 → ∀𝑛 ∈ ℙ 𝐴 ∈ ℕ0) |
Ref | Expression |
---|---|
pcmptcl | ⊢ (𝜑 → (𝐹:ℕ⟶ℕ ∧ seq1( · , 𝐹):ℕ⟶ℕ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pcmpt.2 | . . . 4 ⊢ (𝜑 → ∀𝑛 ∈ ℙ 𝐴 ∈ ℕ0) | |
2 | pm2.27 40 | . . . . . . . 8 ⊢ (𝑛 ∈ ℙ → ((𝑛 ∈ ℙ → 𝐴 ∈ ℕ0) → 𝐴 ∈ ℕ0)) | |
3 | iftrue 3525 | . . . . . . . . . . 11 ⊢ (𝑛 ∈ ℙ → if(𝑛 ∈ ℙ, (𝑛↑𝐴), 1) = (𝑛↑𝐴)) | |
4 | 3 | adantr 274 | . . . . . . . . . 10 ⊢ ((𝑛 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → if(𝑛 ∈ ℙ, (𝑛↑𝐴), 1) = (𝑛↑𝐴)) |
5 | prmnn 12042 | . . . . . . . . . . 11 ⊢ (𝑛 ∈ ℙ → 𝑛 ∈ ℕ) | |
6 | nnexpcl 10468 | . . . . . . . . . . 11 ⊢ ((𝑛 ∈ ℕ ∧ 𝐴 ∈ ℕ0) → (𝑛↑𝐴) ∈ ℕ) | |
7 | 5, 6 | sylan 281 | . . . . . . . . . 10 ⊢ ((𝑛 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → (𝑛↑𝐴) ∈ ℕ) |
8 | 4, 7 | eqeltrd 2243 | . . . . . . . . 9 ⊢ ((𝑛 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → if(𝑛 ∈ ℙ, (𝑛↑𝐴), 1) ∈ ℕ) |
9 | 8 | ex 114 | . . . . . . . 8 ⊢ (𝑛 ∈ ℙ → (𝐴 ∈ ℕ0 → if(𝑛 ∈ ℙ, (𝑛↑𝐴), 1) ∈ ℕ)) |
10 | 2, 9 | syld 45 | . . . . . . 7 ⊢ (𝑛 ∈ ℙ → ((𝑛 ∈ ℙ → 𝐴 ∈ ℕ0) → if(𝑛 ∈ ℙ, (𝑛↑𝐴), 1) ∈ ℕ)) |
11 | iffalse 3528 | . . . . . . . . 9 ⊢ (¬ 𝑛 ∈ ℙ → if(𝑛 ∈ ℙ, (𝑛↑𝐴), 1) = 1) | |
12 | 1nn 8868 | . . . . . . . . 9 ⊢ 1 ∈ ℕ | |
13 | 11, 12 | eqeltrdi 2257 | . . . . . . . 8 ⊢ (¬ 𝑛 ∈ ℙ → if(𝑛 ∈ ℙ, (𝑛↑𝐴), 1) ∈ ℕ) |
14 | 13 | a1d 22 | . . . . . . 7 ⊢ (¬ 𝑛 ∈ ℙ → ((𝑛 ∈ ℙ → 𝐴 ∈ ℕ0) → if(𝑛 ∈ ℙ, (𝑛↑𝐴), 1) ∈ ℕ)) |
15 | 10, 14 | jaoi 706 | . . . . . 6 ⊢ ((𝑛 ∈ ℙ ∨ ¬ 𝑛 ∈ ℙ) → ((𝑛 ∈ ℙ → 𝐴 ∈ ℕ0) → if(𝑛 ∈ ℙ, (𝑛↑𝐴), 1) ∈ ℕ)) |
16 | prmdc 12062 | . . . . . . 7 ⊢ (𝑛 ∈ ℕ → DECID 𝑛 ∈ ℙ) | |
17 | exmiddc 826 | . . . . . . 7 ⊢ (DECID 𝑛 ∈ ℙ → (𝑛 ∈ ℙ ∨ ¬ 𝑛 ∈ ℙ)) | |
18 | 16, 17 | syl 14 | . . . . . 6 ⊢ (𝑛 ∈ ℕ → (𝑛 ∈ ℙ ∨ ¬ 𝑛 ∈ ℙ)) |
19 | 15, 18 | syl11 31 | . . . . 5 ⊢ ((𝑛 ∈ ℙ → 𝐴 ∈ ℕ0) → (𝑛 ∈ ℕ → if(𝑛 ∈ ℙ, (𝑛↑𝐴), 1) ∈ ℕ)) |
20 | 19 | ralimi2 2526 | . . . 4 ⊢ (∀𝑛 ∈ ℙ 𝐴 ∈ ℕ0 → ∀𝑛 ∈ ℕ if(𝑛 ∈ ℙ, (𝑛↑𝐴), 1) ∈ ℕ) |
21 | 1, 20 | syl 14 | . . 3 ⊢ (𝜑 → ∀𝑛 ∈ ℕ if(𝑛 ∈ ℙ, (𝑛↑𝐴), 1) ∈ ℕ) |
22 | pcmpt.1 | . . . 4 ⊢ 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (𝑛↑𝐴), 1)) | |
23 | 22 | fmpt 5635 | . . 3 ⊢ (∀𝑛 ∈ ℕ if(𝑛 ∈ ℙ, (𝑛↑𝐴), 1) ∈ ℕ ↔ 𝐹:ℕ⟶ℕ) |
24 | 21, 23 | sylib 121 | . 2 ⊢ (𝜑 → 𝐹:ℕ⟶ℕ) |
25 | nnuz 9501 | . . 3 ⊢ ℕ = (ℤ≥‘1) | |
26 | 1zzd 9218 | . . 3 ⊢ (𝜑 → 1 ∈ ℤ) | |
27 | 24 | ffvelrnda 5620 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐹‘𝑘) ∈ ℕ) |
28 | nnmulcl 8878 | . . . 4 ⊢ ((𝑘 ∈ ℕ ∧ 𝑝 ∈ ℕ) → (𝑘 · 𝑝) ∈ ℕ) | |
29 | 28 | adantl 275 | . . 3 ⊢ ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑝 ∈ ℕ)) → (𝑘 · 𝑝) ∈ ℕ) |
30 | 25, 26, 27, 29 | seqf 10396 | . 2 ⊢ (𝜑 → seq1( · , 𝐹):ℕ⟶ℕ) |
31 | 24, 30 | jca 304 | 1 ⊢ (𝜑 → (𝐹:ℕ⟶ℕ ∧ seq1( · , 𝐹):ℕ⟶ℕ)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 103 ∨ wo 698 DECID wdc 824 = wceq 1343 ∈ wcel 2136 ∀wral 2444 ifcif 3520 ↦ cmpt 4043 ⟶wf 5184 (class class class)co 5842 1c1 7754 · cmul 7758 ℕcn 8857 ℕ0cn0 9114 seqcseq 10380 ↑cexp 10454 ℙcprime 12039 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-iinf 4565 ax-cnex 7844 ax-resscn 7845 ax-1cn 7846 ax-1re 7847 ax-icn 7848 ax-addcl 7849 ax-addrcl 7850 ax-mulcl 7851 ax-mulrcl 7852 ax-addcom 7853 ax-mulcom 7854 ax-addass 7855 ax-mulass 7856 ax-distr 7857 ax-i2m1 7858 ax-0lt1 7859 ax-1rid 7860 ax-0id 7861 ax-rnegex 7862 ax-precex 7863 ax-cnre 7864 ax-pre-ltirr 7865 ax-pre-ltwlin 7866 ax-pre-lttrn 7867 ax-pre-apti 7868 ax-pre-ltadd 7869 ax-pre-mulgt0 7870 ax-pre-mulext 7871 ax-arch 7872 ax-caucvg 7873 |
This theorem depends on definitions: df-bi 116 df-stab 821 df-dc 825 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-reu 2451 df-rmo 2452 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-if 3521 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-tr 4081 df-id 4271 df-po 4274 df-iso 4275 df-iord 4344 df-on 4346 df-ilim 4347 df-suc 4349 df-iom 4568 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-riota 5798 df-ov 5845 df-oprab 5846 df-mpo 5847 df-1st 6108 df-2nd 6109 df-recs 6273 df-frec 6359 df-1o 6384 df-2o 6385 df-er 6501 df-en 6707 df-fin 6709 df-pnf 7935 df-mnf 7936 df-xr 7937 df-ltxr 7938 df-le 7939 df-sub 8071 df-neg 8072 df-reap 8473 df-ap 8480 df-div 8569 df-inn 8858 df-2 8916 df-3 8917 df-4 8918 df-n0 9115 df-z 9192 df-uz 9467 df-q 9558 df-rp 9590 df-fz 9945 df-fl 10205 df-mod 10258 df-seqfrec 10381 df-exp 10455 df-cj 10784 df-re 10785 df-im 10786 df-rsqrt 10940 df-abs 10941 df-dvds 11728 df-prm 12040 |
This theorem is referenced by: pcmpt 12273 pcmpt2 12274 pcmptdvds 12275 pcprod 12276 1arithlem4 12296 |
Copyright terms: Public domain | W3C validator |