ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pcmptcl GIF version

Theorem pcmptcl 12536
Description: Closure for the prime power map. (Contributed by Mario Carneiro, 12-Mar-2014.)
Hypotheses
Ref Expression
pcmpt.1 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (𝑛𝐴), 1))
pcmpt.2 (𝜑 → ∀𝑛 ∈ ℙ 𝐴 ∈ ℕ0)
Assertion
Ref Expression
pcmptcl (𝜑 → (𝐹:ℕ⟶ℕ ∧ seq1( · , 𝐹):ℕ⟶ℕ))

Proof of Theorem pcmptcl
Dummy variables 𝑘 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pcmpt.2 . . . 4 (𝜑 → ∀𝑛 ∈ ℙ 𝐴 ∈ ℕ0)
2 pm2.27 40 . . . . . . . 8 (𝑛 ∈ ℙ → ((𝑛 ∈ ℙ → 𝐴 ∈ ℕ0) → 𝐴 ∈ ℕ0))
3 iftrue 3567 . . . . . . . . . . 11 (𝑛 ∈ ℙ → if(𝑛 ∈ ℙ, (𝑛𝐴), 1) = (𝑛𝐴))
43adantr 276 . . . . . . . . . 10 ((𝑛 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → if(𝑛 ∈ ℙ, (𝑛𝐴), 1) = (𝑛𝐴))
5 prmnn 12303 . . . . . . . . . . 11 (𝑛 ∈ ℙ → 𝑛 ∈ ℕ)
6 nnexpcl 10661 . . . . . . . . . . 11 ((𝑛 ∈ ℕ ∧ 𝐴 ∈ ℕ0) → (𝑛𝐴) ∈ ℕ)
75, 6sylan 283 . . . . . . . . . 10 ((𝑛 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → (𝑛𝐴) ∈ ℕ)
84, 7eqeltrd 2273 . . . . . . . . 9 ((𝑛 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → if(𝑛 ∈ ℙ, (𝑛𝐴), 1) ∈ ℕ)
98ex 115 . . . . . . . 8 (𝑛 ∈ ℙ → (𝐴 ∈ ℕ0 → if(𝑛 ∈ ℙ, (𝑛𝐴), 1) ∈ ℕ))
102, 9syld 45 . . . . . . 7 (𝑛 ∈ ℙ → ((𝑛 ∈ ℙ → 𝐴 ∈ ℕ0) → if(𝑛 ∈ ℙ, (𝑛𝐴), 1) ∈ ℕ))
11 iffalse 3570 . . . . . . . . 9 𝑛 ∈ ℙ → if(𝑛 ∈ ℙ, (𝑛𝐴), 1) = 1)
12 1nn 9018 . . . . . . . . 9 1 ∈ ℕ
1311, 12eqeltrdi 2287 . . . . . . . 8 𝑛 ∈ ℙ → if(𝑛 ∈ ℙ, (𝑛𝐴), 1) ∈ ℕ)
1413a1d 22 . . . . . . 7 𝑛 ∈ ℙ → ((𝑛 ∈ ℙ → 𝐴 ∈ ℕ0) → if(𝑛 ∈ ℙ, (𝑛𝐴), 1) ∈ ℕ))
1510, 14jaoi 717 . . . . . 6 ((𝑛 ∈ ℙ ∨ ¬ 𝑛 ∈ ℙ) → ((𝑛 ∈ ℙ → 𝐴 ∈ ℕ0) → if(𝑛 ∈ ℙ, (𝑛𝐴), 1) ∈ ℕ))
16 prmdc 12323 . . . . . . 7 (𝑛 ∈ ℕ → DECID 𝑛 ∈ ℙ)
17 exmiddc 837 . . . . . . 7 (DECID 𝑛 ∈ ℙ → (𝑛 ∈ ℙ ∨ ¬ 𝑛 ∈ ℙ))
1816, 17syl 14 . . . . . 6 (𝑛 ∈ ℕ → (𝑛 ∈ ℙ ∨ ¬ 𝑛 ∈ ℙ))
1915, 18syl11 31 . . . . 5 ((𝑛 ∈ ℙ → 𝐴 ∈ ℕ0) → (𝑛 ∈ ℕ → if(𝑛 ∈ ℙ, (𝑛𝐴), 1) ∈ ℕ))
2019ralimi2 2557 . . . 4 (∀𝑛 ∈ ℙ 𝐴 ∈ ℕ0 → ∀𝑛 ∈ ℕ if(𝑛 ∈ ℙ, (𝑛𝐴), 1) ∈ ℕ)
211, 20syl 14 . . 3 (𝜑 → ∀𝑛 ∈ ℕ if(𝑛 ∈ ℙ, (𝑛𝐴), 1) ∈ ℕ)
22 pcmpt.1 . . . 4 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (𝑛𝐴), 1))
2322fmpt 5715 . . 3 (∀𝑛 ∈ ℕ if(𝑛 ∈ ℙ, (𝑛𝐴), 1) ∈ ℕ ↔ 𝐹:ℕ⟶ℕ)
2421, 23sylib 122 . 2 (𝜑𝐹:ℕ⟶ℕ)
25 nnuz 9654 . . 3 ℕ = (ℤ‘1)
26 1zzd 9370 . . 3 (𝜑 → 1 ∈ ℤ)
2724ffvelcdmda 5700 . . 3 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) ∈ ℕ)
28 nnmulcl 9028 . . . 4 ((𝑘 ∈ ℕ ∧ 𝑝 ∈ ℕ) → (𝑘 · 𝑝) ∈ ℕ)
2928adantl 277 . . 3 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑝 ∈ ℕ)) → (𝑘 · 𝑝) ∈ ℕ)
3025, 26, 27, 29seqf 10573 . 2 (𝜑 → seq1( · , 𝐹):ℕ⟶ℕ)
3124, 30jca 306 1 (𝜑 → (𝐹:ℕ⟶ℕ ∧ seq1( · , 𝐹):ℕ⟶ℕ))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wo 709  DECID wdc 835   = wceq 1364  wcel 2167  wral 2475  ifcif 3562  cmpt 4095  wf 5255  (class class class)co 5925  1c1 7897   · cmul 7901  cn 9007  0cn0 9266  seqcseq 10556  cexp 10647  cprime 12300
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-mulrcl 7995  ax-addcom 7996  ax-mulcom 7997  ax-addass 7998  ax-mulass 7999  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-1rid 8003  ax-0id 8004  ax-rnegex 8005  ax-precex 8006  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-apti 8011  ax-pre-ltadd 8012  ax-pre-mulgt0 8013  ax-pre-mulext 8014  ax-arch 8015  ax-caucvg 8016
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-frec 6458  df-1o 6483  df-2o 6484  df-er 6601  df-en 6809  df-fin 6811  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-reap 8619  df-ap 8626  df-div 8717  df-inn 9008  df-2 9066  df-3 9067  df-4 9068  df-n0 9267  df-z 9344  df-uz 9619  df-q 9711  df-rp 9746  df-fz 10101  df-fl 10377  df-mod 10432  df-seqfrec 10557  df-exp 10648  df-cj 11024  df-re 11025  df-im 11026  df-rsqrt 11180  df-abs 11181  df-dvds 11970  df-prm 12301
This theorem is referenced by:  pcmpt  12537  pcmpt2  12538  pcmptdvds  12539  pcprod  12540  1arithlem4  12560
  Copyright terms: Public domain W3C validator