ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pcmptcl GIF version

Theorem pcmptcl 12709
Description: Closure for the prime power map. (Contributed by Mario Carneiro, 12-Mar-2014.)
Hypotheses
Ref Expression
pcmpt.1 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (𝑛𝐴), 1))
pcmpt.2 (𝜑 → ∀𝑛 ∈ ℙ 𝐴 ∈ ℕ0)
Assertion
Ref Expression
pcmptcl (𝜑 → (𝐹:ℕ⟶ℕ ∧ seq1( · , 𝐹):ℕ⟶ℕ))

Proof of Theorem pcmptcl
Dummy variables 𝑘 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pcmpt.2 . . . 4 (𝜑 → ∀𝑛 ∈ ℙ 𝐴 ∈ ℕ0)
2 pm2.27 40 . . . . . . . 8 (𝑛 ∈ ℙ → ((𝑛 ∈ ℙ → 𝐴 ∈ ℕ0) → 𝐴 ∈ ℕ0))
3 iftrue 3577 . . . . . . . . . . 11 (𝑛 ∈ ℙ → if(𝑛 ∈ ℙ, (𝑛𝐴), 1) = (𝑛𝐴))
43adantr 276 . . . . . . . . . 10 ((𝑛 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → if(𝑛 ∈ ℙ, (𝑛𝐴), 1) = (𝑛𝐴))
5 prmnn 12476 . . . . . . . . . . 11 (𝑛 ∈ ℙ → 𝑛 ∈ ℕ)
6 nnexpcl 10704 . . . . . . . . . . 11 ((𝑛 ∈ ℕ ∧ 𝐴 ∈ ℕ0) → (𝑛𝐴) ∈ ℕ)
75, 6sylan 283 . . . . . . . . . 10 ((𝑛 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → (𝑛𝐴) ∈ ℕ)
84, 7eqeltrd 2283 . . . . . . . . 9 ((𝑛 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → if(𝑛 ∈ ℙ, (𝑛𝐴), 1) ∈ ℕ)
98ex 115 . . . . . . . 8 (𝑛 ∈ ℙ → (𝐴 ∈ ℕ0 → if(𝑛 ∈ ℙ, (𝑛𝐴), 1) ∈ ℕ))
102, 9syld 45 . . . . . . 7 (𝑛 ∈ ℙ → ((𝑛 ∈ ℙ → 𝐴 ∈ ℕ0) → if(𝑛 ∈ ℙ, (𝑛𝐴), 1) ∈ ℕ))
11 iffalse 3580 . . . . . . . . 9 𝑛 ∈ ℙ → if(𝑛 ∈ ℙ, (𝑛𝐴), 1) = 1)
12 1nn 9054 . . . . . . . . 9 1 ∈ ℕ
1311, 12eqeltrdi 2297 . . . . . . . 8 𝑛 ∈ ℙ → if(𝑛 ∈ ℙ, (𝑛𝐴), 1) ∈ ℕ)
1413a1d 22 . . . . . . 7 𝑛 ∈ ℙ → ((𝑛 ∈ ℙ → 𝐴 ∈ ℕ0) → if(𝑛 ∈ ℙ, (𝑛𝐴), 1) ∈ ℕ))
1510, 14jaoi 718 . . . . . 6 ((𝑛 ∈ ℙ ∨ ¬ 𝑛 ∈ ℙ) → ((𝑛 ∈ ℙ → 𝐴 ∈ ℕ0) → if(𝑛 ∈ ℙ, (𝑛𝐴), 1) ∈ ℕ))
16 prmdc 12496 . . . . . . 7 (𝑛 ∈ ℕ → DECID 𝑛 ∈ ℙ)
17 exmiddc 838 . . . . . . 7 (DECID 𝑛 ∈ ℙ → (𝑛 ∈ ℙ ∨ ¬ 𝑛 ∈ ℙ))
1816, 17syl 14 . . . . . 6 (𝑛 ∈ ℕ → (𝑛 ∈ ℙ ∨ ¬ 𝑛 ∈ ℙ))
1915, 18syl11 31 . . . . 5 ((𝑛 ∈ ℙ → 𝐴 ∈ ℕ0) → (𝑛 ∈ ℕ → if(𝑛 ∈ ℙ, (𝑛𝐴), 1) ∈ ℕ))
2019ralimi2 2567 . . . 4 (∀𝑛 ∈ ℙ 𝐴 ∈ ℕ0 → ∀𝑛 ∈ ℕ if(𝑛 ∈ ℙ, (𝑛𝐴), 1) ∈ ℕ)
211, 20syl 14 . . 3 (𝜑 → ∀𝑛 ∈ ℕ if(𝑛 ∈ ℙ, (𝑛𝐴), 1) ∈ ℕ)
22 pcmpt.1 . . . 4 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (𝑛𝐴), 1))
2322fmpt 5737 . . 3 (∀𝑛 ∈ ℕ if(𝑛 ∈ ℙ, (𝑛𝐴), 1) ∈ ℕ ↔ 𝐹:ℕ⟶ℕ)
2421, 23sylib 122 . 2 (𝜑𝐹:ℕ⟶ℕ)
25 nnuz 9691 . . 3 ℕ = (ℤ‘1)
26 1zzd 9406 . . 3 (𝜑 → 1 ∈ ℤ)
2724ffvelcdmda 5722 . . 3 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) ∈ ℕ)
28 nnmulcl 9064 . . . 4 ((𝑘 ∈ ℕ ∧ 𝑝 ∈ ℕ) → (𝑘 · 𝑝) ∈ ℕ)
2928adantl 277 . . 3 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑝 ∈ ℕ)) → (𝑘 · 𝑝) ∈ ℕ)
3025, 26, 27, 29seqf 10616 . 2 (𝜑 → seq1( · , 𝐹):ℕ⟶ℕ)
3124, 30jca 306 1 (𝜑 → (𝐹:ℕ⟶ℕ ∧ seq1( · , 𝐹):ℕ⟶ℕ))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wo 710  DECID wdc 836   = wceq 1373  wcel 2177  wral 2485  ifcif 3572  cmpt 4109  wf 5272  (class class class)co 5951  1c1 7933   · cmul 7937  cn 9043  0cn0 9302  seqcseq 10599  cexp 10690  cprime 12473
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4163  ax-sep 4166  ax-nul 4174  ax-pow 4222  ax-pr 4257  ax-un 4484  ax-setind 4589  ax-iinf 4640  ax-cnex 8023  ax-resscn 8024  ax-1cn 8025  ax-1re 8026  ax-icn 8027  ax-addcl 8028  ax-addrcl 8029  ax-mulcl 8030  ax-mulrcl 8031  ax-addcom 8032  ax-mulcom 8033  ax-addass 8034  ax-mulass 8035  ax-distr 8036  ax-i2m1 8037  ax-0lt1 8038  ax-1rid 8039  ax-0id 8040  ax-rnegex 8041  ax-precex 8042  ax-cnre 8043  ax-pre-ltirr 8044  ax-pre-ltwlin 8045  ax-pre-lttrn 8046  ax-pre-apti 8047  ax-pre-ltadd 8048  ax-pre-mulgt0 8049  ax-pre-mulext 8050  ax-arch 8051  ax-caucvg 8052
This theorem depends on definitions:  df-bi 117  df-stab 833  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3000  df-csb 3095  df-dif 3169  df-un 3171  df-in 3173  df-ss 3180  df-nul 3462  df-if 3573  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-int 3888  df-iun 3931  df-br 4048  df-opab 4110  df-mpt 4111  df-tr 4147  df-id 4344  df-po 4347  df-iso 4348  df-iord 4417  df-on 4419  df-ilim 4420  df-suc 4422  df-iom 4643  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-res 4691  df-ima 4692  df-iota 5237  df-fun 5278  df-fn 5279  df-f 5280  df-f1 5281  df-fo 5282  df-f1o 5283  df-fv 5284  df-riota 5906  df-ov 5954  df-oprab 5955  df-mpo 5956  df-1st 6233  df-2nd 6234  df-recs 6398  df-frec 6484  df-1o 6509  df-2o 6510  df-er 6627  df-en 6835  df-fin 6837  df-pnf 8116  df-mnf 8117  df-xr 8118  df-ltxr 8119  df-le 8120  df-sub 8252  df-neg 8253  df-reap 8655  df-ap 8662  df-div 8753  df-inn 9044  df-2 9102  df-3 9103  df-4 9104  df-n0 9303  df-z 9380  df-uz 9656  df-q 9748  df-rp 9783  df-fz 10138  df-fl 10420  df-mod 10475  df-seqfrec 10600  df-exp 10691  df-cj 11197  df-re 11198  df-im 11199  df-rsqrt 11353  df-abs 11354  df-dvds 12143  df-prm 12474
This theorem is referenced by:  pcmpt  12710  pcmpt2  12711  pcmptdvds  12712  pcprod  12713  1arithlem4  12733
  Copyright terms: Public domain W3C validator