Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > pcmptcl | GIF version |
Description: Closure for the prime power map. (Contributed by Mario Carneiro, 12-Mar-2014.) |
Ref | Expression |
---|---|
pcmpt.1 | ⊢ 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (𝑛↑𝐴), 1)) |
pcmpt.2 | ⊢ (𝜑 → ∀𝑛 ∈ ℙ 𝐴 ∈ ℕ0) |
Ref | Expression |
---|---|
pcmptcl | ⊢ (𝜑 → (𝐹:ℕ⟶ℕ ∧ seq1( · , 𝐹):ℕ⟶ℕ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pcmpt.2 | . . . 4 ⊢ (𝜑 → ∀𝑛 ∈ ℙ 𝐴 ∈ ℕ0) | |
2 | pm2.27 40 | . . . . . . . 8 ⊢ (𝑛 ∈ ℙ → ((𝑛 ∈ ℙ → 𝐴 ∈ ℕ0) → 𝐴 ∈ ℕ0)) | |
3 | iftrue 3530 | . . . . . . . . . . 11 ⊢ (𝑛 ∈ ℙ → if(𝑛 ∈ ℙ, (𝑛↑𝐴), 1) = (𝑛↑𝐴)) | |
4 | 3 | adantr 274 | . . . . . . . . . 10 ⊢ ((𝑛 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → if(𝑛 ∈ ℙ, (𝑛↑𝐴), 1) = (𝑛↑𝐴)) |
5 | prmnn 12051 | . . . . . . . . . . 11 ⊢ (𝑛 ∈ ℙ → 𝑛 ∈ ℕ) | |
6 | nnexpcl 10476 | . . . . . . . . . . 11 ⊢ ((𝑛 ∈ ℕ ∧ 𝐴 ∈ ℕ0) → (𝑛↑𝐴) ∈ ℕ) | |
7 | 5, 6 | sylan 281 | . . . . . . . . . 10 ⊢ ((𝑛 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → (𝑛↑𝐴) ∈ ℕ) |
8 | 4, 7 | eqeltrd 2247 | . . . . . . . . 9 ⊢ ((𝑛 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → if(𝑛 ∈ ℙ, (𝑛↑𝐴), 1) ∈ ℕ) |
9 | 8 | ex 114 | . . . . . . . 8 ⊢ (𝑛 ∈ ℙ → (𝐴 ∈ ℕ0 → if(𝑛 ∈ ℙ, (𝑛↑𝐴), 1) ∈ ℕ)) |
10 | 2, 9 | syld 45 | . . . . . . 7 ⊢ (𝑛 ∈ ℙ → ((𝑛 ∈ ℙ → 𝐴 ∈ ℕ0) → if(𝑛 ∈ ℙ, (𝑛↑𝐴), 1) ∈ ℕ)) |
11 | iffalse 3533 | . . . . . . . . 9 ⊢ (¬ 𝑛 ∈ ℙ → if(𝑛 ∈ ℙ, (𝑛↑𝐴), 1) = 1) | |
12 | 1nn 8876 | . . . . . . . . 9 ⊢ 1 ∈ ℕ | |
13 | 11, 12 | eqeltrdi 2261 | . . . . . . . 8 ⊢ (¬ 𝑛 ∈ ℙ → if(𝑛 ∈ ℙ, (𝑛↑𝐴), 1) ∈ ℕ) |
14 | 13 | a1d 22 | . . . . . . 7 ⊢ (¬ 𝑛 ∈ ℙ → ((𝑛 ∈ ℙ → 𝐴 ∈ ℕ0) → if(𝑛 ∈ ℙ, (𝑛↑𝐴), 1) ∈ ℕ)) |
15 | 10, 14 | jaoi 711 | . . . . . 6 ⊢ ((𝑛 ∈ ℙ ∨ ¬ 𝑛 ∈ ℙ) → ((𝑛 ∈ ℙ → 𝐴 ∈ ℕ0) → if(𝑛 ∈ ℙ, (𝑛↑𝐴), 1) ∈ ℕ)) |
16 | prmdc 12071 | . . . . . . 7 ⊢ (𝑛 ∈ ℕ → DECID 𝑛 ∈ ℙ) | |
17 | exmiddc 831 | . . . . . . 7 ⊢ (DECID 𝑛 ∈ ℙ → (𝑛 ∈ ℙ ∨ ¬ 𝑛 ∈ ℙ)) | |
18 | 16, 17 | syl 14 | . . . . . 6 ⊢ (𝑛 ∈ ℕ → (𝑛 ∈ ℙ ∨ ¬ 𝑛 ∈ ℙ)) |
19 | 15, 18 | syl11 31 | . . . . 5 ⊢ ((𝑛 ∈ ℙ → 𝐴 ∈ ℕ0) → (𝑛 ∈ ℕ → if(𝑛 ∈ ℙ, (𝑛↑𝐴), 1) ∈ ℕ)) |
20 | 19 | ralimi2 2530 | . . . 4 ⊢ (∀𝑛 ∈ ℙ 𝐴 ∈ ℕ0 → ∀𝑛 ∈ ℕ if(𝑛 ∈ ℙ, (𝑛↑𝐴), 1) ∈ ℕ) |
21 | 1, 20 | syl 14 | . . 3 ⊢ (𝜑 → ∀𝑛 ∈ ℕ if(𝑛 ∈ ℙ, (𝑛↑𝐴), 1) ∈ ℕ) |
22 | pcmpt.1 | . . . 4 ⊢ 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (𝑛↑𝐴), 1)) | |
23 | 22 | fmpt 5643 | . . 3 ⊢ (∀𝑛 ∈ ℕ if(𝑛 ∈ ℙ, (𝑛↑𝐴), 1) ∈ ℕ ↔ 𝐹:ℕ⟶ℕ) |
24 | 21, 23 | sylib 121 | . 2 ⊢ (𝜑 → 𝐹:ℕ⟶ℕ) |
25 | nnuz 9509 | . . 3 ⊢ ℕ = (ℤ≥‘1) | |
26 | 1zzd 9226 | . . 3 ⊢ (𝜑 → 1 ∈ ℤ) | |
27 | 24 | ffvelrnda 5628 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐹‘𝑘) ∈ ℕ) |
28 | nnmulcl 8886 | . . . 4 ⊢ ((𝑘 ∈ ℕ ∧ 𝑝 ∈ ℕ) → (𝑘 · 𝑝) ∈ ℕ) | |
29 | 28 | adantl 275 | . . 3 ⊢ ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑝 ∈ ℕ)) → (𝑘 · 𝑝) ∈ ℕ) |
30 | 25, 26, 27, 29 | seqf 10404 | . 2 ⊢ (𝜑 → seq1( · , 𝐹):ℕ⟶ℕ) |
31 | 24, 30 | jca 304 | 1 ⊢ (𝜑 → (𝐹:ℕ⟶ℕ ∧ seq1( · , 𝐹):ℕ⟶ℕ)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 103 ∨ wo 703 DECID wdc 829 = wceq 1348 ∈ wcel 2141 ∀wral 2448 ifcif 3525 ↦ cmpt 4048 ⟶wf 5192 (class class class)co 5850 1c1 7762 · cmul 7766 ℕcn 8865 ℕ0cn0 9122 seqcseq 10388 ↑cexp 10462 ℙcprime 12048 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4102 ax-sep 4105 ax-nul 4113 ax-pow 4158 ax-pr 4192 ax-un 4416 ax-setind 4519 ax-iinf 4570 ax-cnex 7852 ax-resscn 7853 ax-1cn 7854 ax-1re 7855 ax-icn 7856 ax-addcl 7857 ax-addrcl 7858 ax-mulcl 7859 ax-mulrcl 7860 ax-addcom 7861 ax-mulcom 7862 ax-addass 7863 ax-mulass 7864 ax-distr 7865 ax-i2m1 7866 ax-0lt1 7867 ax-1rid 7868 ax-0id 7869 ax-rnegex 7870 ax-precex 7871 ax-cnre 7872 ax-pre-ltirr 7873 ax-pre-ltwlin 7874 ax-pre-lttrn 7875 ax-pre-apti 7876 ax-pre-ltadd 7877 ax-pre-mulgt0 7878 ax-pre-mulext 7879 ax-arch 7880 ax-caucvg 7881 |
This theorem depends on definitions: df-bi 116 df-stab 826 df-dc 830 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rmo 2456 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-if 3526 df-pw 3566 df-sn 3587 df-pr 3588 df-op 3590 df-uni 3795 df-int 3830 df-iun 3873 df-br 3988 df-opab 4049 df-mpt 4050 df-tr 4086 df-id 4276 df-po 4279 df-iso 4280 df-iord 4349 df-on 4351 df-ilim 4352 df-suc 4354 df-iom 4573 df-xp 4615 df-rel 4616 df-cnv 4617 df-co 4618 df-dm 4619 df-rn 4620 df-res 4621 df-ima 4622 df-iota 5158 df-fun 5198 df-fn 5199 df-f 5200 df-f1 5201 df-fo 5202 df-f1o 5203 df-fv 5204 df-riota 5806 df-ov 5853 df-oprab 5854 df-mpo 5855 df-1st 6116 df-2nd 6117 df-recs 6281 df-frec 6367 df-1o 6392 df-2o 6393 df-er 6509 df-en 6715 df-fin 6717 df-pnf 7943 df-mnf 7944 df-xr 7945 df-ltxr 7946 df-le 7947 df-sub 8079 df-neg 8080 df-reap 8481 df-ap 8488 df-div 8577 df-inn 8866 df-2 8924 df-3 8925 df-4 8926 df-n0 9123 df-z 9200 df-uz 9475 df-q 9566 df-rp 9598 df-fz 9953 df-fl 10213 df-mod 10266 df-seqfrec 10389 df-exp 10463 df-cj 10793 df-re 10794 df-im 10795 df-rsqrt 10949 df-abs 10950 df-dvds 11737 df-prm 12049 |
This theorem is referenced by: pcmpt 12282 pcmpt2 12283 pcmptdvds 12284 pcprod 12285 1arithlem4 12305 |
Copyright terms: Public domain | W3C validator |