ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  metcnp3 GIF version

Theorem metcnp3 13151
Description: Two ways to express that 𝐹 is continuous at 𝑃 for metric spaces. Proposition 14-4.2 of [Gleason] p. 240. (Contributed by NM, 17-May-2007.) (Revised by Mario Carneiro, 28-Aug-2015.)
Hypotheses
Ref Expression
metcn.2 𝐽 = (MetOpen‘𝐶)
metcn.4 𝐾 = (MetOpen‘𝐷)
Assertion
Ref Expression
metcnp3 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+ (𝐹 “ (𝑃(ball‘𝐶)𝑧)) ⊆ ((𝐹𝑃)(ball‘𝐷)𝑦))))
Distinct variable groups:   𝑦,𝑧,𝐹   𝑦,𝐽,𝑧   𝑦,𝐾,𝑧   𝑦,𝑋,𝑧   𝑦,𝑌,𝑧   𝑦,𝐶,𝑧   𝑦,𝐷,𝑧   𝑦,𝑃,𝑧

Proof of Theorem metcnp3
Dummy variables 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 metcn.2 . . . . 5 𝐽 = (MetOpen‘𝐶)
21mopntopon 13083 . . . 4 (𝐶 ∈ (∞Met‘𝑋) → 𝐽 ∈ (TopOn‘𝑋))
323ad2ant1 1008 . . 3 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) → 𝐽 ∈ (TopOn‘𝑋))
4 metcn.4 . . . . 5 𝐾 = (MetOpen‘𝐷)
54mopnval 13082 . . . 4 (𝐷 ∈ (∞Met‘𝑌) → 𝐾 = (topGen‘ran (ball‘𝐷)))
653ad2ant2 1009 . . 3 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) → 𝐾 = (topGen‘ran (ball‘𝐷)))
74mopntopon 13083 . . . 4 (𝐷 ∈ (∞Met‘𝑌) → 𝐾 ∈ (TopOn‘𝑌))
873ad2ant2 1009 . . 3 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) → 𝐾 ∈ (TopOn‘𝑌))
9 simp3 989 . . 3 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) → 𝑃𝑋)
103, 6, 8, 9tgcnp 12849 . 2 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑢 ∈ ran (ball‘𝐷)((𝐹𝑃) ∈ 𝑢 → ∃𝑣𝐽 (𝑃𝑣 ∧ (𝐹𝑣) ⊆ 𝑢)))))
11 simpll2 1027 . . . . . . . 8 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ 𝑦 ∈ ℝ+) → 𝐷 ∈ (∞Met‘𝑌))
12 simplr 520 . . . . . . . . 9 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ 𝑦 ∈ ℝ+) → 𝐹:𝑋𝑌)
13 simpll3 1028 . . . . . . . . 9 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ 𝑦 ∈ ℝ+) → 𝑃𝑋)
1412, 13ffvelrnd 5621 . . . . . . . 8 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ 𝑦 ∈ ℝ+) → (𝐹𝑃) ∈ 𝑌)
15 simpr 109 . . . . . . . 8 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ 𝑦 ∈ ℝ+) → 𝑦 ∈ ℝ+)
16 blcntr 13056 . . . . . . . 8 ((𝐷 ∈ (∞Met‘𝑌) ∧ (𝐹𝑃) ∈ 𝑌𝑦 ∈ ℝ+) → (𝐹𝑃) ∈ ((𝐹𝑃)(ball‘𝐷)𝑦))
1711, 14, 15, 16syl3anc 1228 . . . . . . 7 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ 𝑦 ∈ ℝ+) → (𝐹𝑃) ∈ ((𝐹𝑃)(ball‘𝐷)𝑦))
18 rpxr 9597 . . . . . . . . . 10 (𝑦 ∈ ℝ+𝑦 ∈ ℝ*)
1918adantl 275 . . . . . . . . 9 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ 𝑦 ∈ ℝ+) → 𝑦 ∈ ℝ*)
20 blelrn 13060 . . . . . . . . 9 ((𝐷 ∈ (∞Met‘𝑌) ∧ (𝐹𝑃) ∈ 𝑌𝑦 ∈ ℝ*) → ((𝐹𝑃)(ball‘𝐷)𝑦) ∈ ran (ball‘𝐷))
2111, 14, 19, 20syl3anc 1228 . . . . . . . 8 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ 𝑦 ∈ ℝ+) → ((𝐹𝑃)(ball‘𝐷)𝑦) ∈ ran (ball‘𝐷))
22 eleq2 2230 . . . . . . . . . 10 (𝑢 = ((𝐹𝑃)(ball‘𝐷)𝑦) → ((𝐹𝑃) ∈ 𝑢 ↔ (𝐹𝑃) ∈ ((𝐹𝑃)(ball‘𝐷)𝑦)))
23 sseq2 3166 . . . . . . . . . . . 12 (𝑢 = ((𝐹𝑃)(ball‘𝐷)𝑦) → ((𝐹𝑣) ⊆ 𝑢 ↔ (𝐹𝑣) ⊆ ((𝐹𝑃)(ball‘𝐷)𝑦)))
2423anbi2d 460 . . . . . . . . . . 11 (𝑢 = ((𝐹𝑃)(ball‘𝐷)𝑦) → ((𝑃𝑣 ∧ (𝐹𝑣) ⊆ 𝑢) ↔ (𝑃𝑣 ∧ (𝐹𝑣) ⊆ ((𝐹𝑃)(ball‘𝐷)𝑦))))
2524rexbidv 2467 . . . . . . . . . 10 (𝑢 = ((𝐹𝑃)(ball‘𝐷)𝑦) → (∃𝑣𝐽 (𝑃𝑣 ∧ (𝐹𝑣) ⊆ 𝑢) ↔ ∃𝑣𝐽 (𝑃𝑣 ∧ (𝐹𝑣) ⊆ ((𝐹𝑃)(ball‘𝐷)𝑦))))
2622, 25imbi12d 233 . . . . . . . . 9 (𝑢 = ((𝐹𝑃)(ball‘𝐷)𝑦) → (((𝐹𝑃) ∈ 𝑢 → ∃𝑣𝐽 (𝑃𝑣 ∧ (𝐹𝑣) ⊆ 𝑢)) ↔ ((𝐹𝑃) ∈ ((𝐹𝑃)(ball‘𝐷)𝑦) → ∃𝑣𝐽 (𝑃𝑣 ∧ (𝐹𝑣) ⊆ ((𝐹𝑃)(ball‘𝐷)𝑦)))))
2726rspcv 2826 . . . . . . . 8 (((𝐹𝑃)(ball‘𝐷)𝑦) ∈ ran (ball‘𝐷) → (∀𝑢 ∈ ran (ball‘𝐷)((𝐹𝑃) ∈ 𝑢 → ∃𝑣𝐽 (𝑃𝑣 ∧ (𝐹𝑣) ⊆ 𝑢)) → ((𝐹𝑃) ∈ ((𝐹𝑃)(ball‘𝐷)𝑦) → ∃𝑣𝐽 (𝑃𝑣 ∧ (𝐹𝑣) ⊆ ((𝐹𝑃)(ball‘𝐷)𝑦)))))
2821, 27syl 14 . . . . . . 7 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ 𝑦 ∈ ℝ+) → (∀𝑢 ∈ ran (ball‘𝐷)((𝐹𝑃) ∈ 𝑢 → ∃𝑣𝐽 (𝑃𝑣 ∧ (𝐹𝑣) ⊆ 𝑢)) → ((𝐹𝑃) ∈ ((𝐹𝑃)(ball‘𝐷)𝑦) → ∃𝑣𝐽 (𝑃𝑣 ∧ (𝐹𝑣) ⊆ ((𝐹𝑃)(ball‘𝐷)𝑦)))))
2917, 28mpid 42 . . . . . 6 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ 𝑦 ∈ ℝ+) → (∀𝑢 ∈ ran (ball‘𝐷)((𝐹𝑃) ∈ 𝑢 → ∃𝑣𝐽 (𝑃𝑣 ∧ (𝐹𝑣) ⊆ 𝑢)) → ∃𝑣𝐽 (𝑃𝑣 ∧ (𝐹𝑣) ⊆ ((𝐹𝑃)(ball‘𝐷)𝑦))))
30 simpl1 990 . . . . . . . . . . . 12 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) → 𝐶 ∈ (∞Met‘𝑋))
3130ad2antrr 480 . . . . . . . . . . 11 (((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑦 ∈ ℝ+𝑣𝐽)) ∧ 𝑃𝑣) → 𝐶 ∈ (∞Met‘𝑋))
32 simplrr 526 . . . . . . . . . . 11 (((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑦 ∈ ℝ+𝑣𝐽)) ∧ 𝑃𝑣) → 𝑣𝐽)
33 simpr 109 . . . . . . . . . . 11 (((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑦 ∈ ℝ+𝑣𝐽)) ∧ 𝑃𝑣) → 𝑃𝑣)
341mopni2 13123 . . . . . . . . . . 11 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑣𝐽𝑃𝑣) → ∃𝑧 ∈ ℝ+ (𝑃(ball‘𝐶)𝑧) ⊆ 𝑣)
3531, 32, 33, 34syl3anc 1228 . . . . . . . . . 10 (((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑦 ∈ ℝ+𝑣𝐽)) ∧ 𝑃𝑣) → ∃𝑧 ∈ ℝ+ (𝑃(ball‘𝐶)𝑧) ⊆ 𝑣)
36 sstr2 3149 . . . . . . . . . . . 12 ((𝐹 “ (𝑃(ball‘𝐶)𝑧)) ⊆ (𝐹𝑣) → ((𝐹𝑣) ⊆ ((𝐹𝑃)(ball‘𝐷)𝑦) → (𝐹 “ (𝑃(ball‘𝐶)𝑧)) ⊆ ((𝐹𝑃)(ball‘𝐷)𝑦)))
37 imass2 4980 . . . . . . . . . . . 12 ((𝑃(ball‘𝐶)𝑧) ⊆ 𝑣 → (𝐹 “ (𝑃(ball‘𝐶)𝑧)) ⊆ (𝐹𝑣))
3836, 37syl11 31 . . . . . . . . . . 11 ((𝐹𝑣) ⊆ ((𝐹𝑃)(ball‘𝐷)𝑦) → ((𝑃(ball‘𝐶)𝑧) ⊆ 𝑣 → (𝐹 “ (𝑃(ball‘𝐶)𝑧)) ⊆ ((𝐹𝑃)(ball‘𝐷)𝑦)))
3938reximdv 2567 . . . . . . . . . 10 ((𝐹𝑣) ⊆ ((𝐹𝑃)(ball‘𝐷)𝑦) → (∃𝑧 ∈ ℝ+ (𝑃(ball‘𝐶)𝑧) ⊆ 𝑣 → ∃𝑧 ∈ ℝ+ (𝐹 “ (𝑃(ball‘𝐶)𝑧)) ⊆ ((𝐹𝑃)(ball‘𝐷)𝑦)))
4035, 39syl5com 29 . . . . . . . . 9 (((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑦 ∈ ℝ+𝑣𝐽)) ∧ 𝑃𝑣) → ((𝐹𝑣) ⊆ ((𝐹𝑃)(ball‘𝐷)𝑦) → ∃𝑧 ∈ ℝ+ (𝐹 “ (𝑃(ball‘𝐶)𝑧)) ⊆ ((𝐹𝑃)(ball‘𝐷)𝑦)))
4140expimpd 361 . . . . . . . 8 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑦 ∈ ℝ+𝑣𝐽)) → ((𝑃𝑣 ∧ (𝐹𝑣) ⊆ ((𝐹𝑃)(ball‘𝐷)𝑦)) → ∃𝑧 ∈ ℝ+ (𝐹 “ (𝑃(ball‘𝐶)𝑧)) ⊆ ((𝐹𝑃)(ball‘𝐷)𝑦)))
4241expr 373 . . . . . . 7 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ 𝑦 ∈ ℝ+) → (𝑣𝐽 → ((𝑃𝑣 ∧ (𝐹𝑣) ⊆ ((𝐹𝑃)(ball‘𝐷)𝑦)) → ∃𝑧 ∈ ℝ+ (𝐹 “ (𝑃(ball‘𝐶)𝑧)) ⊆ ((𝐹𝑃)(ball‘𝐷)𝑦))))
4342rexlimdv 2582 . . . . . 6 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ 𝑦 ∈ ℝ+) → (∃𝑣𝐽 (𝑃𝑣 ∧ (𝐹𝑣) ⊆ ((𝐹𝑃)(ball‘𝐷)𝑦)) → ∃𝑧 ∈ ℝ+ (𝐹 “ (𝑃(ball‘𝐶)𝑧)) ⊆ ((𝐹𝑃)(ball‘𝐷)𝑦)))
4429, 43syld 45 . . . . 5 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ 𝑦 ∈ ℝ+) → (∀𝑢 ∈ ran (ball‘𝐷)((𝐹𝑃) ∈ 𝑢 → ∃𝑣𝐽 (𝑃𝑣 ∧ (𝐹𝑣) ⊆ 𝑢)) → ∃𝑧 ∈ ℝ+ (𝐹 “ (𝑃(ball‘𝐶)𝑧)) ⊆ ((𝐹𝑃)(ball‘𝐷)𝑦)))
4544ralrimdva 2546 . . . 4 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) → (∀𝑢 ∈ ran (ball‘𝐷)((𝐹𝑃) ∈ 𝑢 → ∃𝑣𝐽 (𝑃𝑣 ∧ (𝐹𝑣) ⊆ 𝑢)) → ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+ (𝐹 “ (𝑃(ball‘𝐶)𝑧)) ⊆ ((𝐹𝑃)(ball‘𝐷)𝑦)))
46 simpl2 991 . . . . . . . . 9 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) → 𝐷 ∈ (∞Met‘𝑌))
47 blss 13068 . . . . . . . . . 10 ((𝐷 ∈ (∞Met‘𝑌) ∧ 𝑢 ∈ ran (ball‘𝐷) ∧ (𝐹𝑃) ∈ 𝑢) → ∃𝑦 ∈ ℝ+ ((𝐹𝑃)(ball‘𝐷)𝑦) ⊆ 𝑢)
48473expib 1196 . . . . . . . . 9 (𝐷 ∈ (∞Met‘𝑌) → ((𝑢 ∈ ran (ball‘𝐷) ∧ (𝐹𝑃) ∈ 𝑢) → ∃𝑦 ∈ ℝ+ ((𝐹𝑃)(ball‘𝐷)𝑦) ⊆ 𝑢))
4946, 48syl 14 . . . . . . . 8 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) → ((𝑢 ∈ ran (ball‘𝐷) ∧ (𝐹𝑃) ∈ 𝑢) → ∃𝑦 ∈ ℝ+ ((𝐹𝑃)(ball‘𝐷)𝑦) ⊆ 𝑢))
50 r19.29r 2604 . . . . . . . . . 10 ((∃𝑦 ∈ ℝ+ ((𝐹𝑃)(ball‘𝐷)𝑦) ⊆ 𝑢 ∧ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+ (𝐹 “ (𝑃(ball‘𝐶)𝑧)) ⊆ ((𝐹𝑃)(ball‘𝐷)𝑦)) → ∃𝑦 ∈ ℝ+ (((𝐹𝑃)(ball‘𝐷)𝑦) ⊆ 𝑢 ∧ ∃𝑧 ∈ ℝ+ (𝐹 “ (𝑃(ball‘𝐶)𝑧)) ⊆ ((𝐹𝑃)(ball‘𝐷)𝑦)))
5130ad3antrrr 484 . . . . . . . . . . . . . . . 16 ((((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ 𝑦 ∈ ℝ+) ∧ ((𝐹𝑃)(ball‘𝐷)𝑦) ⊆ 𝑢) ∧ (𝑧 ∈ ℝ+ ∧ (𝐹 “ (𝑃(ball‘𝐶)𝑧)) ⊆ ((𝐹𝑃)(ball‘𝐷)𝑦))) → 𝐶 ∈ (∞Met‘𝑋))
5213ad2antrr 480 . . . . . . . . . . . . . . . 16 ((((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ 𝑦 ∈ ℝ+) ∧ ((𝐹𝑃)(ball‘𝐷)𝑦) ⊆ 𝑢) ∧ (𝑧 ∈ ℝ+ ∧ (𝐹 “ (𝑃(ball‘𝐶)𝑧)) ⊆ ((𝐹𝑃)(ball‘𝐷)𝑦))) → 𝑃𝑋)
53 rpxr 9597 . . . . . . . . . . . . . . . . 17 (𝑧 ∈ ℝ+𝑧 ∈ ℝ*)
5453ad2antrl 482 . . . . . . . . . . . . . . . 16 ((((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ 𝑦 ∈ ℝ+) ∧ ((𝐹𝑃)(ball‘𝐷)𝑦) ⊆ 𝑢) ∧ (𝑧 ∈ ℝ+ ∧ (𝐹 “ (𝑃(ball‘𝐶)𝑧)) ⊆ ((𝐹𝑃)(ball‘𝐷)𝑦))) → 𝑧 ∈ ℝ*)
551blopn 13130 . . . . . . . . . . . . . . . 16 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑧 ∈ ℝ*) → (𝑃(ball‘𝐶)𝑧) ∈ 𝐽)
5651, 52, 54, 55syl3anc 1228 . . . . . . . . . . . . . . 15 ((((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ 𝑦 ∈ ℝ+) ∧ ((𝐹𝑃)(ball‘𝐷)𝑦) ⊆ 𝑢) ∧ (𝑧 ∈ ℝ+ ∧ (𝐹 “ (𝑃(ball‘𝐶)𝑧)) ⊆ ((𝐹𝑃)(ball‘𝐷)𝑦))) → (𝑃(ball‘𝐶)𝑧) ∈ 𝐽)
57 simprl 521 . . . . . . . . . . . . . . . 16 ((((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ 𝑦 ∈ ℝ+) ∧ ((𝐹𝑃)(ball‘𝐷)𝑦) ⊆ 𝑢) ∧ (𝑧 ∈ ℝ+ ∧ (𝐹 “ (𝑃(ball‘𝐶)𝑧)) ⊆ ((𝐹𝑃)(ball‘𝐷)𝑦))) → 𝑧 ∈ ℝ+)
58 blcntr 13056 . . . . . . . . . . . . . . . 16 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑧 ∈ ℝ+) → 𝑃 ∈ (𝑃(ball‘𝐶)𝑧))
5951, 52, 57, 58syl3anc 1228 . . . . . . . . . . . . . . 15 ((((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ 𝑦 ∈ ℝ+) ∧ ((𝐹𝑃)(ball‘𝐷)𝑦) ⊆ 𝑢) ∧ (𝑧 ∈ ℝ+ ∧ (𝐹 “ (𝑃(ball‘𝐶)𝑧)) ⊆ ((𝐹𝑃)(ball‘𝐷)𝑦))) → 𝑃 ∈ (𝑃(ball‘𝐶)𝑧))
60 sstr 3150 . . . . . . . . . . . . . . . . 17 (((𝐹 “ (𝑃(ball‘𝐶)𝑧)) ⊆ ((𝐹𝑃)(ball‘𝐷)𝑦) ∧ ((𝐹𝑃)(ball‘𝐷)𝑦) ⊆ 𝑢) → (𝐹 “ (𝑃(ball‘𝐶)𝑧)) ⊆ 𝑢)
6160ad2ant2l 500 . . . . . . . . . . . . . . . 16 (((𝑧 ∈ ℝ+ ∧ (𝐹 “ (𝑃(ball‘𝐶)𝑧)) ⊆ ((𝐹𝑃)(ball‘𝐷)𝑦)) ∧ ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ 𝑦 ∈ ℝ+) ∧ ((𝐹𝑃)(ball‘𝐷)𝑦) ⊆ 𝑢)) → (𝐹 “ (𝑃(ball‘𝐶)𝑧)) ⊆ 𝑢)
6261ancoms 266 . . . . . . . . . . . . . . 15 ((((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ 𝑦 ∈ ℝ+) ∧ ((𝐹𝑃)(ball‘𝐷)𝑦) ⊆ 𝑢) ∧ (𝑧 ∈ ℝ+ ∧ (𝐹 “ (𝑃(ball‘𝐶)𝑧)) ⊆ ((𝐹𝑃)(ball‘𝐷)𝑦))) → (𝐹 “ (𝑃(ball‘𝐶)𝑧)) ⊆ 𝑢)
63 eleq2 2230 . . . . . . . . . . . . . . . . 17 (𝑣 = (𝑃(ball‘𝐶)𝑧) → (𝑃𝑣𝑃 ∈ (𝑃(ball‘𝐶)𝑧)))
64 imaeq2 4942 . . . . . . . . . . . . . . . . . 18 (𝑣 = (𝑃(ball‘𝐶)𝑧) → (𝐹𝑣) = (𝐹 “ (𝑃(ball‘𝐶)𝑧)))
6564sseq1d 3171 . . . . . . . . . . . . . . . . 17 (𝑣 = (𝑃(ball‘𝐶)𝑧) → ((𝐹𝑣) ⊆ 𝑢 ↔ (𝐹 “ (𝑃(ball‘𝐶)𝑧)) ⊆ 𝑢))
6663, 65anbi12d 465 . . . . . . . . . . . . . . . 16 (𝑣 = (𝑃(ball‘𝐶)𝑧) → ((𝑃𝑣 ∧ (𝐹𝑣) ⊆ 𝑢) ↔ (𝑃 ∈ (𝑃(ball‘𝐶)𝑧) ∧ (𝐹 “ (𝑃(ball‘𝐶)𝑧)) ⊆ 𝑢)))
6766rspcev 2830 . . . . . . . . . . . . . . 15 (((𝑃(ball‘𝐶)𝑧) ∈ 𝐽 ∧ (𝑃 ∈ (𝑃(ball‘𝐶)𝑧) ∧ (𝐹 “ (𝑃(ball‘𝐶)𝑧)) ⊆ 𝑢)) → ∃𝑣𝐽 (𝑃𝑣 ∧ (𝐹𝑣) ⊆ 𝑢))
6856, 59, 62, 67syl12anc 1226 . . . . . . . . . . . . . 14 ((((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ 𝑦 ∈ ℝ+) ∧ ((𝐹𝑃)(ball‘𝐷)𝑦) ⊆ 𝑢) ∧ (𝑧 ∈ ℝ+ ∧ (𝐹 “ (𝑃(ball‘𝐶)𝑧)) ⊆ ((𝐹𝑃)(ball‘𝐷)𝑦))) → ∃𝑣𝐽 (𝑃𝑣 ∧ (𝐹𝑣) ⊆ 𝑢))
6968expr 373 . . . . . . . . . . . . 13 ((((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ 𝑦 ∈ ℝ+) ∧ ((𝐹𝑃)(ball‘𝐷)𝑦) ⊆ 𝑢) ∧ 𝑧 ∈ ℝ+) → ((𝐹 “ (𝑃(ball‘𝐶)𝑧)) ⊆ ((𝐹𝑃)(ball‘𝐷)𝑦) → ∃𝑣𝐽 (𝑃𝑣 ∧ (𝐹𝑣) ⊆ 𝑢)))
7069rexlimdva 2583 . . . . . . . . . . . 12 (((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ 𝑦 ∈ ℝ+) ∧ ((𝐹𝑃)(ball‘𝐷)𝑦) ⊆ 𝑢) → (∃𝑧 ∈ ℝ+ (𝐹 “ (𝑃(ball‘𝐶)𝑧)) ⊆ ((𝐹𝑃)(ball‘𝐷)𝑦) → ∃𝑣𝐽 (𝑃𝑣 ∧ (𝐹𝑣) ⊆ 𝑢)))
7170expimpd 361 . . . . . . . . . . 11 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ 𝑦 ∈ ℝ+) → ((((𝐹𝑃)(ball‘𝐷)𝑦) ⊆ 𝑢 ∧ ∃𝑧 ∈ ℝ+ (𝐹 “ (𝑃(ball‘𝐶)𝑧)) ⊆ ((𝐹𝑃)(ball‘𝐷)𝑦)) → ∃𝑣𝐽 (𝑃𝑣 ∧ (𝐹𝑣) ⊆ 𝑢)))
7271rexlimdva 2583 . . . . . . . . . 10 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) → (∃𝑦 ∈ ℝ+ (((𝐹𝑃)(ball‘𝐷)𝑦) ⊆ 𝑢 ∧ ∃𝑧 ∈ ℝ+ (𝐹 “ (𝑃(ball‘𝐶)𝑧)) ⊆ ((𝐹𝑃)(ball‘𝐷)𝑦)) → ∃𝑣𝐽 (𝑃𝑣 ∧ (𝐹𝑣) ⊆ 𝑢)))
7350, 72syl5 32 . . . . . . . . 9 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) → ((∃𝑦 ∈ ℝ+ ((𝐹𝑃)(ball‘𝐷)𝑦) ⊆ 𝑢 ∧ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+ (𝐹 “ (𝑃(ball‘𝐶)𝑧)) ⊆ ((𝐹𝑃)(ball‘𝐷)𝑦)) → ∃𝑣𝐽 (𝑃𝑣 ∧ (𝐹𝑣) ⊆ 𝑢)))
7473expd 256 . . . . . . . 8 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) → (∃𝑦 ∈ ℝ+ ((𝐹𝑃)(ball‘𝐷)𝑦) ⊆ 𝑢 → (∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+ (𝐹 “ (𝑃(ball‘𝐶)𝑧)) ⊆ ((𝐹𝑃)(ball‘𝐷)𝑦) → ∃𝑣𝐽 (𝑃𝑣 ∧ (𝐹𝑣) ⊆ 𝑢))))
7549, 74syld 45 . . . . . . 7 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) → ((𝑢 ∈ ran (ball‘𝐷) ∧ (𝐹𝑃) ∈ 𝑢) → (∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+ (𝐹 “ (𝑃(ball‘𝐶)𝑧)) ⊆ ((𝐹𝑃)(ball‘𝐷)𝑦) → ∃𝑣𝐽 (𝑃𝑣 ∧ (𝐹𝑣) ⊆ 𝑢))))
7675com23 78 . . . . . 6 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) → (∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+ (𝐹 “ (𝑃(ball‘𝐶)𝑧)) ⊆ ((𝐹𝑃)(ball‘𝐷)𝑦) → ((𝑢 ∈ ran (ball‘𝐷) ∧ (𝐹𝑃) ∈ 𝑢) → ∃𝑣𝐽 (𝑃𝑣 ∧ (𝐹𝑣) ⊆ 𝑢))))
7776exp4a 364 . . . . 5 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) → (∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+ (𝐹 “ (𝑃(ball‘𝐶)𝑧)) ⊆ ((𝐹𝑃)(ball‘𝐷)𝑦) → (𝑢 ∈ ran (ball‘𝐷) → ((𝐹𝑃) ∈ 𝑢 → ∃𝑣𝐽 (𝑃𝑣 ∧ (𝐹𝑣) ⊆ 𝑢)))))
7877ralrimdv 2545 . . . 4 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) → (∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+ (𝐹 “ (𝑃(ball‘𝐶)𝑧)) ⊆ ((𝐹𝑃)(ball‘𝐷)𝑦) → ∀𝑢 ∈ ran (ball‘𝐷)((𝐹𝑃) ∈ 𝑢 → ∃𝑣𝐽 (𝑃𝑣 ∧ (𝐹𝑣) ⊆ 𝑢))))
7945, 78impbid 128 . . 3 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) → (∀𝑢 ∈ ran (ball‘𝐷)((𝐹𝑃) ∈ 𝑢 → ∃𝑣𝐽 (𝑃𝑣 ∧ (𝐹𝑣) ⊆ 𝑢)) ↔ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+ (𝐹 “ (𝑃(ball‘𝐶)𝑧)) ⊆ ((𝐹𝑃)(ball‘𝐷)𝑦)))
8079pm5.32da 448 . 2 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) → ((𝐹:𝑋𝑌 ∧ ∀𝑢 ∈ ran (ball‘𝐷)((𝐹𝑃) ∈ 𝑢 → ∃𝑣𝐽 (𝑃𝑣 ∧ (𝐹𝑣) ⊆ 𝑢))) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+ (𝐹 “ (𝑃(ball‘𝐶)𝑧)) ⊆ ((𝐹𝑃)(ball‘𝐷)𝑦))))
8110, 80bitrd 187 1 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+ (𝐹 “ (𝑃(ball‘𝐶)𝑧)) ⊆ ((𝐹𝑃)(ball‘𝐷)𝑦))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 968   = wceq 1343  wcel 2136  wral 2444  wrex 2445  wss 3116  ran crn 4605  cima 4607  wf 5184  cfv 5188  (class class class)co 5842  *cxr 7932  +crp 9589  topGenctg 12571  ∞Metcxmet 12620  ballcbl 12622  MetOpencmopn 12625  TopOnctopon 12648   CnP ccnp 12826
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871  ax-arch 7872  ax-caucvg 7873
This theorem depends on definitions:  df-bi 116  df-stab 821  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-ilim 4347  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-isom 5197  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-frec 6359  df-map 6616  df-sup 6949  df-inf 6950  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-div 8569  df-inn 8858  df-2 8916  df-3 8917  df-4 8918  df-n0 9115  df-z 9192  df-uz 9467  df-q 9558  df-rp 9590  df-xneg 9708  df-xadd 9709  df-seqfrec 10381  df-exp 10455  df-cj 10784  df-re 10785  df-im 10786  df-rsqrt 10940  df-abs 10941  df-topgen 12577  df-psmet 12627  df-xmet 12628  df-bl 12630  df-mopn 12631  df-top 12636  df-topon 12649  df-bases 12681  df-cnp 12829
This theorem is referenced by:  metcnp  13152
  Copyright terms: Public domain W3C validator