ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fiinopn GIF version

Theorem fiinopn 12402
Description: The intersection of a nonempty finite family of open sets is open. (Contributed by FL, 20-Apr-2012.)
Assertion
Ref Expression
fiinopn (𝐽 ∈ Top → ((𝐴𝐽𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin) → 𝐴𝐽))

Proof of Theorem fiinopn
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elpwg 3551 . . . . . . 7 (𝐴 ∈ Fin → (𝐴 ∈ 𝒫 𝐽𝐴𝐽))
2 sseq1 3151 . . . . . . . . . . . . . 14 (𝑥 = 𝐴 → (𝑥𝐽𝐴𝐽))
3 neeq1 2340 . . . . . . . . . . . . . 14 (𝑥 = 𝐴 → (𝑥 ≠ ∅ ↔ 𝐴 ≠ ∅))
4 eleq1 2220 . . . . . . . . . . . . . 14 (𝑥 = 𝐴 → (𝑥 ∈ Fin ↔ 𝐴 ∈ Fin))
52, 3, 43anbi123d 1294 . . . . . . . . . . . . 13 (𝑥 = 𝐴 → ((𝑥𝐽𝑥 ≠ ∅ ∧ 𝑥 ∈ Fin) ↔ (𝐴𝐽𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin)))
6 inteq 3810 . . . . . . . . . . . . . . 15 (𝑥 = 𝐴 𝑥 = 𝐴)
76eleq1d 2226 . . . . . . . . . . . . . 14 (𝑥 = 𝐴 → ( 𝑥𝐽 𝐴𝐽))
87imbi2d 229 . . . . . . . . . . . . 13 (𝑥 = 𝐴 → ((𝐽 ∈ Top → 𝑥𝐽) ↔ (𝐽 ∈ Top → 𝐴𝐽)))
95, 8imbi12d 233 . . . . . . . . . . . 12 (𝑥 = 𝐴 → (((𝑥𝐽𝑥 ≠ ∅ ∧ 𝑥 ∈ Fin) → (𝐽 ∈ Top → 𝑥𝐽)) ↔ ((𝐴𝐽𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin) → (𝐽 ∈ Top → 𝐴𝐽))))
10 sp 1491 . . . . . . . . . . . . . 14 (∀𝑥((𝑥𝐽𝑥 ≠ ∅ ∧ 𝑥 ∈ Fin) → 𝑥𝐽) → ((𝑥𝐽𝑥 ≠ ∅ ∧ 𝑥 ∈ Fin) → 𝑥𝐽))
1110adantl 275 . . . . . . . . . . . . 13 ((∀𝑥(𝑥𝐽 𝑥𝐽) ∧ ∀𝑥((𝑥𝐽𝑥 ≠ ∅ ∧ 𝑥 ∈ Fin) → 𝑥𝐽)) → ((𝑥𝐽𝑥 ≠ ∅ ∧ 𝑥 ∈ Fin) → 𝑥𝐽))
12 istopfin 12398 . . . . . . . . . . . . 13 (𝐽 ∈ Top → (∀𝑥(𝑥𝐽 𝑥𝐽) ∧ ∀𝑥((𝑥𝐽𝑥 ≠ ∅ ∧ 𝑥 ∈ Fin) → 𝑥𝐽)))
1311, 12syl11 31 . . . . . . . . . . . 12 ((𝑥𝐽𝑥 ≠ ∅ ∧ 𝑥 ∈ Fin) → (𝐽 ∈ Top → 𝑥𝐽))
149, 13vtoclg 2772 . . . . . . . . . . 11 (𝐴 ∈ 𝒫 𝐽 → ((𝐴𝐽𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin) → (𝐽 ∈ Top → 𝐴𝐽)))
1514com12 30 . . . . . . . . . 10 ((𝐴𝐽𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin) → (𝐴 ∈ 𝒫 𝐽 → (𝐽 ∈ Top → 𝐴𝐽)))
16153exp 1184 . . . . . . . . 9 (𝐴𝐽 → (𝐴 ≠ ∅ → (𝐴 ∈ Fin → (𝐴 ∈ 𝒫 𝐽 → (𝐽 ∈ Top → 𝐴𝐽)))))
1716com3r 79 . . . . . . . 8 (𝐴 ∈ Fin → (𝐴𝐽 → (𝐴 ≠ ∅ → (𝐴 ∈ 𝒫 𝐽 → (𝐽 ∈ Top → 𝐴𝐽)))))
1817com4r 86 . . . . . . 7 (𝐴 ∈ 𝒫 𝐽 → (𝐴 ∈ Fin → (𝐴𝐽 → (𝐴 ≠ ∅ → (𝐽 ∈ Top → 𝐴𝐽)))))
191, 18syl6bir 163 . . . . . 6 (𝐴 ∈ Fin → (𝐴𝐽 → (𝐴 ∈ Fin → (𝐴𝐽 → (𝐴 ≠ ∅ → (𝐽 ∈ Top → 𝐴𝐽))))))
2019pm2.43a 51 . . . . 5 (𝐴 ∈ Fin → (𝐴𝐽 → (𝐴𝐽 → (𝐴 ≠ ∅ → (𝐽 ∈ Top → 𝐴𝐽)))))
2120com4l 84 . . . 4 (𝐴𝐽 → (𝐴𝐽 → (𝐴 ≠ ∅ → (𝐴 ∈ Fin → (𝐽 ∈ Top → 𝐴𝐽)))))
2221pm2.43i 49 . . 3 (𝐴𝐽 → (𝐴 ≠ ∅ → (𝐴 ∈ Fin → (𝐽 ∈ Top → 𝐴𝐽))))
23223imp 1176 . 2 ((𝐴𝐽𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin) → (𝐽 ∈ Top → 𝐴𝐽))
2423com12 30 1 (𝐽 ∈ Top → ((𝐴𝐽𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin) → 𝐴𝐽))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  w3a 963  wal 1333   = wceq 1335  wcel 2128  wne 2327  wss 3102  c0 3394  𝒫 cpw 3543   cuni 3772   cint 3807  Fincfn 6685  Topctop 12395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-sep 4082  ax-nul 4090  ax-pow 4135  ax-pr 4169  ax-un 4393  ax-iinf 4547
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-ral 2440  df-rex 2441  df-v 2714  df-sbc 2938  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-nul 3395  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3773  df-int 3808  df-br 3966  df-opab 4026  df-id 4253  df-suc 4331  df-iom 4550  df-xp 4592  df-rel 4593  df-cnv 4594  df-co 4595  df-dm 4596  df-rn 4597  df-res 4598  df-ima 4599  df-iota 5135  df-fun 5172  df-fn 5173  df-f 5174  df-f1 5175  df-fo 5176  df-f1o 5177  df-fv 5178  df-er 6480  df-en 6686  df-fin 6688  df-top 12396
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator