![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > alzdvds | GIF version |
Description: Only 0 is divisible by all integers. (Contributed by Paul Chapman, 21-Mar-2011.) |
Ref | Expression |
---|---|
alzdvds | ⊢ (𝑁 ∈ ℤ → (∀𝑥 ∈ ℤ 𝑥 ∥ 𝑁 ↔ 𝑁 = 0)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnssz 8865 | . . . . . . . 8 ⊢ ℕ ⊆ ℤ | |
2 | zcn 8853 | . . . . . . . . . 10 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℂ) | |
3 | 2 | abscld 10745 | . . . . . . . . 9 ⊢ (𝑁 ∈ ℤ → (abs‘𝑁) ∈ ℝ) |
4 | arch 8768 | . . . . . . . . 9 ⊢ ((abs‘𝑁) ∈ ℝ → ∃𝑥 ∈ ℕ (abs‘𝑁) < 𝑥) | |
5 | 3, 4 | syl 14 | . . . . . . . 8 ⊢ (𝑁 ∈ ℤ → ∃𝑥 ∈ ℕ (abs‘𝑁) < 𝑥) |
6 | ssrexv 3101 | . . . . . . . 8 ⊢ (ℕ ⊆ ℤ → (∃𝑥 ∈ ℕ (abs‘𝑁) < 𝑥 → ∃𝑥 ∈ ℤ (abs‘𝑁) < 𝑥)) | |
7 | 1, 5, 6 | mpsyl 65 | . . . . . . 7 ⊢ (𝑁 ∈ ℤ → ∃𝑥 ∈ ℤ (abs‘𝑁) < 𝑥) |
8 | zabscl 10650 | . . . . . . . . . 10 ⊢ (𝑁 ∈ ℤ → (abs‘𝑁) ∈ ℤ) | |
9 | zltnle 8894 | . . . . . . . . . 10 ⊢ (((abs‘𝑁) ∈ ℤ ∧ 𝑥 ∈ ℤ) → ((abs‘𝑁) < 𝑥 ↔ ¬ 𝑥 ≤ (abs‘𝑁))) | |
10 | 8, 9 | sylan 278 | . . . . . . . . 9 ⊢ ((𝑁 ∈ ℤ ∧ 𝑥 ∈ ℤ) → ((abs‘𝑁) < 𝑥 ↔ ¬ 𝑥 ≤ (abs‘𝑁))) |
11 | 10 | rexbidva 2388 | . . . . . . . 8 ⊢ (𝑁 ∈ ℤ → (∃𝑥 ∈ ℤ (abs‘𝑁) < 𝑥 ↔ ∃𝑥 ∈ ℤ ¬ 𝑥 ≤ (abs‘𝑁))) |
12 | rexnalim 2381 | . . . . . . . 8 ⊢ (∃𝑥 ∈ ℤ ¬ 𝑥 ≤ (abs‘𝑁) → ¬ ∀𝑥 ∈ ℤ 𝑥 ≤ (abs‘𝑁)) | |
13 | 11, 12 | syl6bi 162 | . . . . . . 7 ⊢ (𝑁 ∈ ℤ → (∃𝑥 ∈ ℤ (abs‘𝑁) < 𝑥 → ¬ ∀𝑥 ∈ ℤ 𝑥 ≤ (abs‘𝑁))) |
14 | 7, 13 | mpd 13 | . . . . . 6 ⊢ (𝑁 ∈ ℤ → ¬ ∀𝑥 ∈ ℤ 𝑥 ≤ (abs‘𝑁)) |
15 | 14 | adantl 272 | . . . . 5 ⊢ ((∀𝑥 ∈ ℤ 𝑥 ∥ 𝑁 ∧ 𝑁 ∈ ℤ) → ¬ ∀𝑥 ∈ ℤ 𝑥 ≤ (abs‘𝑁)) |
16 | ralim 2445 | . . . . . . 7 ⊢ (∀𝑥 ∈ ℤ (𝑥 ∥ 𝑁 → 𝑥 ≤ (abs‘𝑁)) → (∀𝑥 ∈ ℤ 𝑥 ∥ 𝑁 → ∀𝑥 ∈ ℤ 𝑥 ≤ (abs‘𝑁))) | |
17 | dvdsleabs 11288 | . . . . . . . . . 10 ⊢ ((𝑥 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (𝑥 ∥ 𝑁 → 𝑥 ≤ (abs‘𝑁))) | |
18 | 17 | 3expb 1147 | . . . . . . . . 9 ⊢ ((𝑥 ∈ ℤ ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑥 ∥ 𝑁 → 𝑥 ≤ (abs‘𝑁))) |
19 | 18 | expcom 115 | . . . . . . . 8 ⊢ ((𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (𝑥 ∈ ℤ → (𝑥 ∥ 𝑁 → 𝑥 ≤ (abs‘𝑁)))) |
20 | 19 | ralrimiv 2457 | . . . . . . 7 ⊢ ((𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → ∀𝑥 ∈ ℤ (𝑥 ∥ 𝑁 → 𝑥 ≤ (abs‘𝑁))) |
21 | 16, 20 | syl11 31 | . . . . . 6 ⊢ (∀𝑥 ∈ ℤ 𝑥 ∥ 𝑁 → ((𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → ∀𝑥 ∈ ℤ 𝑥 ≤ (abs‘𝑁))) |
22 | 21 | expdimp 256 | . . . . 5 ⊢ ((∀𝑥 ∈ ℤ 𝑥 ∥ 𝑁 ∧ 𝑁 ∈ ℤ) → (𝑁 ≠ 0 → ∀𝑥 ∈ ℤ 𝑥 ≤ (abs‘𝑁))) |
23 | 15, 22 | mtod 627 | . . . 4 ⊢ ((∀𝑥 ∈ ℤ 𝑥 ∥ 𝑁 ∧ 𝑁 ∈ ℤ) → ¬ 𝑁 ≠ 0) |
24 | 0z 8859 | . . . . . . 7 ⊢ 0 ∈ ℤ | |
25 | zdceq 8920 | . . . . . . 7 ⊢ ((𝑁 ∈ ℤ ∧ 0 ∈ ℤ) → DECID 𝑁 = 0) | |
26 | 24, 25 | mpan2 417 | . . . . . 6 ⊢ (𝑁 ∈ ℤ → DECID 𝑁 = 0) |
27 | nnedc 2267 | . . . . . 6 ⊢ (DECID 𝑁 = 0 → (¬ 𝑁 ≠ 0 ↔ 𝑁 = 0)) | |
28 | 26, 27 | syl 14 | . . . . 5 ⊢ (𝑁 ∈ ℤ → (¬ 𝑁 ≠ 0 ↔ 𝑁 = 0)) |
29 | 28 | adantl 272 | . . . 4 ⊢ ((∀𝑥 ∈ ℤ 𝑥 ∥ 𝑁 ∧ 𝑁 ∈ ℤ) → (¬ 𝑁 ≠ 0 ↔ 𝑁 = 0)) |
30 | 23, 29 | mpbid 146 | . . 3 ⊢ ((∀𝑥 ∈ ℤ 𝑥 ∥ 𝑁 ∧ 𝑁 ∈ ℤ) → 𝑁 = 0) |
31 | 30 | expcom 115 | . 2 ⊢ (𝑁 ∈ ℤ → (∀𝑥 ∈ ℤ 𝑥 ∥ 𝑁 → 𝑁 = 0)) |
32 | dvds0 11253 | . . . 4 ⊢ (𝑥 ∈ ℤ → 𝑥 ∥ 0) | |
33 | breq2 3871 | . . . 4 ⊢ (𝑁 = 0 → (𝑥 ∥ 𝑁 ↔ 𝑥 ∥ 0)) | |
34 | 32, 33 | syl5ibr 155 | . . 3 ⊢ (𝑁 = 0 → (𝑥 ∈ ℤ → 𝑥 ∥ 𝑁)) |
35 | 34 | ralrimiv 2457 | . 2 ⊢ (𝑁 = 0 → ∀𝑥 ∈ ℤ 𝑥 ∥ 𝑁) |
36 | 31, 35 | impbid1 141 | 1 ⊢ (𝑁 ∈ ℤ → (∀𝑥 ∈ ℤ 𝑥 ∥ 𝑁 ↔ 𝑁 = 0)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 103 ↔ wb 104 DECID wdc 783 = wceq 1296 ∈ wcel 1445 ≠ wne 2262 ∀wral 2370 ∃wrex 2371 ⊆ wss 3013 class class class wbr 3867 ‘cfv 5049 ℝcr 7446 0cc0 7447 < clt 7619 ≤ cle 7620 ℕcn 8520 ℤcz 8848 abscabs 10561 ∥ cdvds 11238 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 582 ax-in2 583 ax-io 668 ax-5 1388 ax-7 1389 ax-gen 1390 ax-ie1 1434 ax-ie2 1435 ax-8 1447 ax-10 1448 ax-11 1449 ax-i12 1450 ax-bndl 1451 ax-4 1452 ax-13 1456 ax-14 1457 ax-17 1471 ax-i9 1475 ax-ial 1479 ax-i5r 1480 ax-ext 2077 ax-coll 3975 ax-sep 3978 ax-nul 3986 ax-pow 4030 ax-pr 4060 ax-un 4284 ax-setind 4381 ax-iinf 4431 ax-cnex 7533 ax-resscn 7534 ax-1cn 7535 ax-1re 7536 ax-icn 7537 ax-addcl 7538 ax-addrcl 7539 ax-mulcl 7540 ax-mulrcl 7541 ax-addcom 7542 ax-mulcom 7543 ax-addass 7544 ax-mulass 7545 ax-distr 7546 ax-i2m1 7547 ax-0lt1 7548 ax-1rid 7549 ax-0id 7550 ax-rnegex 7551 ax-precex 7552 ax-cnre 7553 ax-pre-ltirr 7554 ax-pre-ltwlin 7555 ax-pre-lttrn 7556 ax-pre-apti 7557 ax-pre-ltadd 7558 ax-pre-mulgt0 7559 ax-pre-mulext 7560 ax-arch 7561 ax-caucvg 7562 |
This theorem depends on definitions: df-bi 116 df-dc 784 df-3or 928 df-3an 929 df-tru 1299 df-fal 1302 df-nf 1402 df-sb 1700 df-eu 1958 df-mo 1959 df-clab 2082 df-cleq 2088 df-clel 2091 df-nfc 2224 df-ne 2263 df-nel 2358 df-ral 2375 df-rex 2376 df-reu 2377 df-rmo 2378 df-rab 2379 df-v 2635 df-sbc 2855 df-csb 2948 df-dif 3015 df-un 3017 df-in 3019 df-ss 3026 df-nul 3303 df-if 3414 df-pw 3451 df-sn 3472 df-pr 3473 df-op 3475 df-uni 3676 df-int 3711 df-iun 3754 df-br 3868 df-opab 3922 df-mpt 3923 df-tr 3959 df-id 4144 df-po 4147 df-iso 4148 df-iord 4217 df-on 4219 df-ilim 4220 df-suc 4222 df-iom 4434 df-xp 4473 df-rel 4474 df-cnv 4475 df-co 4476 df-dm 4477 df-rn 4478 df-res 4479 df-ima 4480 df-iota 5014 df-fun 5051 df-fn 5052 df-f 5053 df-f1 5054 df-fo 5055 df-f1o 5056 df-fv 5057 df-riota 5646 df-ov 5693 df-oprab 5694 df-mpt2 5695 df-1st 5949 df-2nd 5950 df-recs 6108 df-frec 6194 df-pnf 7621 df-mnf 7622 df-xr 7623 df-ltxr 7624 df-le 7625 df-sub 7752 df-neg 7753 df-reap 8149 df-ap 8156 df-div 8237 df-inn 8521 df-2 8579 df-3 8580 df-4 8581 df-n0 8772 df-z 8849 df-uz 9119 df-q 9204 df-rp 9234 df-iseq 10002 df-seq3 10003 df-exp 10086 df-cj 10407 df-re 10408 df-im 10409 df-rsqrt 10562 df-abs 10563 df-dvds 11239 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |