Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > alzdvds | GIF version |
Description: Only 0 is divisible by all integers. (Contributed by Paul Chapman, 21-Mar-2011.) |
Ref | Expression |
---|---|
alzdvds | ⊢ (𝑁 ∈ ℤ → (∀𝑥 ∈ ℤ 𝑥 ∥ 𝑁 ↔ 𝑁 = 0)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnssz 9208 | . . . . . . . 8 ⊢ ℕ ⊆ ℤ | |
2 | zcn 9196 | . . . . . . . . . 10 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℂ) | |
3 | 2 | abscld 11123 | . . . . . . . . 9 ⊢ (𝑁 ∈ ℤ → (abs‘𝑁) ∈ ℝ) |
4 | arch 9111 | . . . . . . . . 9 ⊢ ((abs‘𝑁) ∈ ℝ → ∃𝑥 ∈ ℕ (abs‘𝑁) < 𝑥) | |
5 | 3, 4 | syl 14 | . . . . . . . 8 ⊢ (𝑁 ∈ ℤ → ∃𝑥 ∈ ℕ (abs‘𝑁) < 𝑥) |
6 | ssrexv 3207 | . . . . . . . 8 ⊢ (ℕ ⊆ ℤ → (∃𝑥 ∈ ℕ (abs‘𝑁) < 𝑥 → ∃𝑥 ∈ ℤ (abs‘𝑁) < 𝑥)) | |
7 | 1, 5, 6 | mpsyl 65 | . . . . . . 7 ⊢ (𝑁 ∈ ℤ → ∃𝑥 ∈ ℤ (abs‘𝑁) < 𝑥) |
8 | zabscl 11028 | . . . . . . . . . 10 ⊢ (𝑁 ∈ ℤ → (abs‘𝑁) ∈ ℤ) | |
9 | zltnle 9237 | . . . . . . . . . 10 ⊢ (((abs‘𝑁) ∈ ℤ ∧ 𝑥 ∈ ℤ) → ((abs‘𝑁) < 𝑥 ↔ ¬ 𝑥 ≤ (abs‘𝑁))) | |
10 | 8, 9 | sylan 281 | . . . . . . . . 9 ⊢ ((𝑁 ∈ ℤ ∧ 𝑥 ∈ ℤ) → ((abs‘𝑁) < 𝑥 ↔ ¬ 𝑥 ≤ (abs‘𝑁))) |
11 | 10 | rexbidva 2463 | . . . . . . . 8 ⊢ (𝑁 ∈ ℤ → (∃𝑥 ∈ ℤ (abs‘𝑁) < 𝑥 ↔ ∃𝑥 ∈ ℤ ¬ 𝑥 ≤ (abs‘𝑁))) |
12 | rexnalim 2455 | . . . . . . . 8 ⊢ (∃𝑥 ∈ ℤ ¬ 𝑥 ≤ (abs‘𝑁) → ¬ ∀𝑥 ∈ ℤ 𝑥 ≤ (abs‘𝑁)) | |
13 | 11, 12 | syl6bi 162 | . . . . . . 7 ⊢ (𝑁 ∈ ℤ → (∃𝑥 ∈ ℤ (abs‘𝑁) < 𝑥 → ¬ ∀𝑥 ∈ ℤ 𝑥 ≤ (abs‘𝑁))) |
14 | 7, 13 | mpd 13 | . . . . . 6 ⊢ (𝑁 ∈ ℤ → ¬ ∀𝑥 ∈ ℤ 𝑥 ≤ (abs‘𝑁)) |
15 | 14 | adantl 275 | . . . . 5 ⊢ ((∀𝑥 ∈ ℤ 𝑥 ∥ 𝑁 ∧ 𝑁 ∈ ℤ) → ¬ ∀𝑥 ∈ ℤ 𝑥 ≤ (abs‘𝑁)) |
16 | ralim 2525 | . . . . . . 7 ⊢ (∀𝑥 ∈ ℤ (𝑥 ∥ 𝑁 → 𝑥 ≤ (abs‘𝑁)) → (∀𝑥 ∈ ℤ 𝑥 ∥ 𝑁 → ∀𝑥 ∈ ℤ 𝑥 ≤ (abs‘𝑁))) | |
17 | dvdsleabs 11783 | . . . . . . . . . 10 ⊢ ((𝑥 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (𝑥 ∥ 𝑁 → 𝑥 ≤ (abs‘𝑁))) | |
18 | 17 | 3expb 1194 | . . . . . . . . 9 ⊢ ((𝑥 ∈ ℤ ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑥 ∥ 𝑁 → 𝑥 ≤ (abs‘𝑁))) |
19 | 18 | expcom 115 | . . . . . . . 8 ⊢ ((𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (𝑥 ∈ ℤ → (𝑥 ∥ 𝑁 → 𝑥 ≤ (abs‘𝑁)))) |
20 | 19 | ralrimiv 2538 | . . . . . . 7 ⊢ ((𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → ∀𝑥 ∈ ℤ (𝑥 ∥ 𝑁 → 𝑥 ≤ (abs‘𝑁))) |
21 | 16, 20 | syl11 31 | . . . . . 6 ⊢ (∀𝑥 ∈ ℤ 𝑥 ∥ 𝑁 → ((𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → ∀𝑥 ∈ ℤ 𝑥 ≤ (abs‘𝑁))) |
22 | 21 | expdimp 257 | . . . . 5 ⊢ ((∀𝑥 ∈ ℤ 𝑥 ∥ 𝑁 ∧ 𝑁 ∈ ℤ) → (𝑁 ≠ 0 → ∀𝑥 ∈ ℤ 𝑥 ≤ (abs‘𝑁))) |
23 | 15, 22 | mtod 653 | . . . 4 ⊢ ((∀𝑥 ∈ ℤ 𝑥 ∥ 𝑁 ∧ 𝑁 ∈ ℤ) → ¬ 𝑁 ≠ 0) |
24 | 0z 9202 | . . . . . . 7 ⊢ 0 ∈ ℤ | |
25 | zdceq 9266 | . . . . . . 7 ⊢ ((𝑁 ∈ ℤ ∧ 0 ∈ ℤ) → DECID 𝑁 = 0) | |
26 | 24, 25 | mpan2 422 | . . . . . 6 ⊢ (𝑁 ∈ ℤ → DECID 𝑁 = 0) |
27 | nnedc 2341 | . . . . . 6 ⊢ (DECID 𝑁 = 0 → (¬ 𝑁 ≠ 0 ↔ 𝑁 = 0)) | |
28 | 26, 27 | syl 14 | . . . . 5 ⊢ (𝑁 ∈ ℤ → (¬ 𝑁 ≠ 0 ↔ 𝑁 = 0)) |
29 | 28 | adantl 275 | . . . 4 ⊢ ((∀𝑥 ∈ ℤ 𝑥 ∥ 𝑁 ∧ 𝑁 ∈ ℤ) → (¬ 𝑁 ≠ 0 ↔ 𝑁 = 0)) |
30 | 23, 29 | mpbid 146 | . . 3 ⊢ ((∀𝑥 ∈ ℤ 𝑥 ∥ 𝑁 ∧ 𝑁 ∈ ℤ) → 𝑁 = 0) |
31 | 30 | expcom 115 | . 2 ⊢ (𝑁 ∈ ℤ → (∀𝑥 ∈ ℤ 𝑥 ∥ 𝑁 → 𝑁 = 0)) |
32 | dvds0 11746 | . . . 4 ⊢ (𝑥 ∈ ℤ → 𝑥 ∥ 0) | |
33 | breq2 3986 | . . . 4 ⊢ (𝑁 = 0 → (𝑥 ∥ 𝑁 ↔ 𝑥 ∥ 0)) | |
34 | 32, 33 | syl5ibr 155 | . . 3 ⊢ (𝑁 = 0 → (𝑥 ∈ ℤ → 𝑥 ∥ 𝑁)) |
35 | 34 | ralrimiv 2538 | . 2 ⊢ (𝑁 = 0 → ∀𝑥 ∈ ℤ 𝑥 ∥ 𝑁) |
36 | 31, 35 | impbid1 141 | 1 ⊢ (𝑁 ∈ ℤ → (∀𝑥 ∈ ℤ 𝑥 ∥ 𝑁 ↔ 𝑁 = 0)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 103 ↔ wb 104 DECID wdc 824 = wceq 1343 ∈ wcel 2136 ≠ wne 2336 ∀wral 2444 ∃wrex 2445 ⊆ wss 3116 class class class wbr 3982 ‘cfv 5188 ℝcr 7752 0cc0 7753 < clt 7933 ≤ cle 7934 ℕcn 8857 ℤcz 9191 abscabs 10939 ∥ cdvds 11727 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-iinf 4565 ax-cnex 7844 ax-resscn 7845 ax-1cn 7846 ax-1re 7847 ax-icn 7848 ax-addcl 7849 ax-addrcl 7850 ax-mulcl 7851 ax-mulrcl 7852 ax-addcom 7853 ax-mulcom 7854 ax-addass 7855 ax-mulass 7856 ax-distr 7857 ax-i2m1 7858 ax-0lt1 7859 ax-1rid 7860 ax-0id 7861 ax-rnegex 7862 ax-precex 7863 ax-cnre 7864 ax-pre-ltirr 7865 ax-pre-ltwlin 7866 ax-pre-lttrn 7867 ax-pre-apti 7868 ax-pre-ltadd 7869 ax-pre-mulgt0 7870 ax-pre-mulext 7871 ax-arch 7872 ax-caucvg 7873 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-reu 2451 df-rmo 2452 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-if 3521 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-tr 4081 df-id 4271 df-po 4274 df-iso 4275 df-iord 4344 df-on 4346 df-ilim 4347 df-suc 4349 df-iom 4568 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-riota 5798 df-ov 5845 df-oprab 5846 df-mpo 5847 df-1st 6108 df-2nd 6109 df-recs 6273 df-frec 6359 df-pnf 7935 df-mnf 7936 df-xr 7937 df-ltxr 7938 df-le 7939 df-sub 8071 df-neg 8072 df-reap 8473 df-ap 8480 df-div 8569 df-inn 8858 df-2 8916 df-3 8917 df-4 8918 df-n0 9115 df-z 9192 df-uz 9467 df-q 9558 df-rp 9590 df-seqfrec 10381 df-exp 10455 df-cj 10784 df-re 10785 df-im 10786 df-rsqrt 10940 df-abs 10941 df-dvds 11728 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |