ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  alzdvds GIF version

Theorem alzdvds 11792
Description: Only 0 is divisible by all integers. (Contributed by Paul Chapman, 21-Mar-2011.)
Assertion
Ref Expression
alzdvds (𝑁 ∈ ℤ → (∀𝑥 ∈ ℤ 𝑥𝑁𝑁 = 0))
Distinct variable group:   𝑥,𝑁

Proof of Theorem alzdvds
StepHypRef Expression
1 nnssz 9208 . . . . . . . 8 ℕ ⊆ ℤ
2 zcn 9196 . . . . . . . . . 10 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
32abscld 11123 . . . . . . . . 9 (𝑁 ∈ ℤ → (abs‘𝑁) ∈ ℝ)
4 arch 9111 . . . . . . . . 9 ((abs‘𝑁) ∈ ℝ → ∃𝑥 ∈ ℕ (abs‘𝑁) < 𝑥)
53, 4syl 14 . . . . . . . 8 (𝑁 ∈ ℤ → ∃𝑥 ∈ ℕ (abs‘𝑁) < 𝑥)
6 ssrexv 3207 . . . . . . . 8 (ℕ ⊆ ℤ → (∃𝑥 ∈ ℕ (abs‘𝑁) < 𝑥 → ∃𝑥 ∈ ℤ (abs‘𝑁) < 𝑥))
71, 5, 6mpsyl 65 . . . . . . 7 (𝑁 ∈ ℤ → ∃𝑥 ∈ ℤ (abs‘𝑁) < 𝑥)
8 zabscl 11028 . . . . . . . . . 10 (𝑁 ∈ ℤ → (abs‘𝑁) ∈ ℤ)
9 zltnle 9237 . . . . . . . . . 10 (((abs‘𝑁) ∈ ℤ ∧ 𝑥 ∈ ℤ) → ((abs‘𝑁) < 𝑥 ↔ ¬ 𝑥 ≤ (abs‘𝑁)))
108, 9sylan 281 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 𝑥 ∈ ℤ) → ((abs‘𝑁) < 𝑥 ↔ ¬ 𝑥 ≤ (abs‘𝑁)))
1110rexbidva 2463 . . . . . . . 8 (𝑁 ∈ ℤ → (∃𝑥 ∈ ℤ (abs‘𝑁) < 𝑥 ↔ ∃𝑥 ∈ ℤ ¬ 𝑥 ≤ (abs‘𝑁)))
12 rexnalim 2455 . . . . . . . 8 (∃𝑥 ∈ ℤ ¬ 𝑥 ≤ (abs‘𝑁) → ¬ ∀𝑥 ∈ ℤ 𝑥 ≤ (abs‘𝑁))
1311, 12syl6bi 162 . . . . . . 7 (𝑁 ∈ ℤ → (∃𝑥 ∈ ℤ (abs‘𝑁) < 𝑥 → ¬ ∀𝑥 ∈ ℤ 𝑥 ≤ (abs‘𝑁)))
147, 13mpd 13 . . . . . 6 (𝑁 ∈ ℤ → ¬ ∀𝑥 ∈ ℤ 𝑥 ≤ (abs‘𝑁))
1514adantl 275 . . . . 5 ((∀𝑥 ∈ ℤ 𝑥𝑁𝑁 ∈ ℤ) → ¬ ∀𝑥 ∈ ℤ 𝑥 ≤ (abs‘𝑁))
16 ralim 2525 . . . . . . 7 (∀𝑥 ∈ ℤ (𝑥𝑁𝑥 ≤ (abs‘𝑁)) → (∀𝑥 ∈ ℤ 𝑥𝑁 → ∀𝑥 ∈ ℤ 𝑥 ≤ (abs‘𝑁)))
17 dvdsleabs 11783 . . . . . . . . . 10 ((𝑥 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (𝑥𝑁𝑥 ≤ (abs‘𝑁)))
18173expb 1194 . . . . . . . . 9 ((𝑥 ∈ ℤ ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑥𝑁𝑥 ≤ (abs‘𝑁)))
1918expcom 115 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (𝑥 ∈ ℤ → (𝑥𝑁𝑥 ≤ (abs‘𝑁))))
2019ralrimiv 2538 . . . . . . 7 ((𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → ∀𝑥 ∈ ℤ (𝑥𝑁𝑥 ≤ (abs‘𝑁)))
2116, 20syl11 31 . . . . . 6 (∀𝑥 ∈ ℤ 𝑥𝑁 → ((𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → ∀𝑥 ∈ ℤ 𝑥 ≤ (abs‘𝑁)))
2221expdimp 257 . . . . 5 ((∀𝑥 ∈ ℤ 𝑥𝑁𝑁 ∈ ℤ) → (𝑁 ≠ 0 → ∀𝑥 ∈ ℤ 𝑥 ≤ (abs‘𝑁)))
2315, 22mtod 653 . . . 4 ((∀𝑥 ∈ ℤ 𝑥𝑁𝑁 ∈ ℤ) → ¬ 𝑁 ≠ 0)
24 0z 9202 . . . . . . 7 0 ∈ ℤ
25 zdceq 9266 . . . . . . 7 ((𝑁 ∈ ℤ ∧ 0 ∈ ℤ) → DECID 𝑁 = 0)
2624, 25mpan2 422 . . . . . 6 (𝑁 ∈ ℤ → DECID 𝑁 = 0)
27 nnedc 2341 . . . . . 6 (DECID 𝑁 = 0 → (¬ 𝑁 ≠ 0 ↔ 𝑁 = 0))
2826, 27syl 14 . . . . 5 (𝑁 ∈ ℤ → (¬ 𝑁 ≠ 0 ↔ 𝑁 = 0))
2928adantl 275 . . . 4 ((∀𝑥 ∈ ℤ 𝑥𝑁𝑁 ∈ ℤ) → (¬ 𝑁 ≠ 0 ↔ 𝑁 = 0))
3023, 29mpbid 146 . . 3 ((∀𝑥 ∈ ℤ 𝑥𝑁𝑁 ∈ ℤ) → 𝑁 = 0)
3130expcom 115 . 2 (𝑁 ∈ ℤ → (∀𝑥 ∈ ℤ 𝑥𝑁𝑁 = 0))
32 dvds0 11746 . . . 4 (𝑥 ∈ ℤ → 𝑥 ∥ 0)
33 breq2 3986 . . . 4 (𝑁 = 0 → (𝑥𝑁𝑥 ∥ 0))
3432, 33syl5ibr 155 . . 3 (𝑁 = 0 → (𝑥 ∈ ℤ → 𝑥𝑁))
3534ralrimiv 2538 . 2 (𝑁 = 0 → ∀𝑥 ∈ ℤ 𝑥𝑁)
3631, 35impbid1 141 1 (𝑁 ∈ ℤ → (∀𝑥 ∈ ℤ 𝑥𝑁𝑁 = 0))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  DECID wdc 824   = wceq 1343  wcel 2136  wne 2336  wral 2444  wrex 2445  wss 3116   class class class wbr 3982  cfv 5188  cr 7752  0cc0 7753   < clt 7933  cle 7934  cn 8857  cz 9191  abscabs 10939  cdvds 11727
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871  ax-arch 7872  ax-caucvg 7873
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-ilim 4347  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-frec 6359  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-div 8569  df-inn 8858  df-2 8916  df-3 8917  df-4 8918  df-n0 9115  df-z 9192  df-uz 9467  df-q 9558  df-rp 9590  df-seqfrec 10381  df-exp 10455  df-cj 10784  df-re 10785  df-im 10786  df-rsqrt 10940  df-abs 10941  df-dvds 11728
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator