| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > alzdvds | GIF version | ||
| Description: Only 0 is divisible by all integers. (Contributed by Paul Chapman, 21-Mar-2011.) |
| Ref | Expression |
|---|---|
| alzdvds | ⊢ (𝑁 ∈ ℤ → (∀𝑥 ∈ ℤ 𝑥 ∥ 𝑁 ↔ 𝑁 = 0)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnssz 9396 | . . . . . . . 8 ⊢ ℕ ⊆ ℤ | |
| 2 | zcn 9384 | . . . . . . . . . 10 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℂ) | |
| 3 | 2 | abscld 11536 | . . . . . . . . 9 ⊢ (𝑁 ∈ ℤ → (abs‘𝑁) ∈ ℝ) |
| 4 | arch 9299 | . . . . . . . . 9 ⊢ ((abs‘𝑁) ∈ ℝ → ∃𝑥 ∈ ℕ (abs‘𝑁) < 𝑥) | |
| 5 | 3, 4 | syl 14 | . . . . . . . 8 ⊢ (𝑁 ∈ ℤ → ∃𝑥 ∈ ℕ (abs‘𝑁) < 𝑥) |
| 6 | ssrexv 3259 | . . . . . . . 8 ⊢ (ℕ ⊆ ℤ → (∃𝑥 ∈ ℕ (abs‘𝑁) < 𝑥 → ∃𝑥 ∈ ℤ (abs‘𝑁) < 𝑥)) | |
| 7 | 1, 5, 6 | mpsyl 65 | . . . . . . 7 ⊢ (𝑁 ∈ ℤ → ∃𝑥 ∈ ℤ (abs‘𝑁) < 𝑥) |
| 8 | zabscl 11441 | . . . . . . . . . 10 ⊢ (𝑁 ∈ ℤ → (abs‘𝑁) ∈ ℤ) | |
| 9 | zltnle 9425 | . . . . . . . . . 10 ⊢ (((abs‘𝑁) ∈ ℤ ∧ 𝑥 ∈ ℤ) → ((abs‘𝑁) < 𝑥 ↔ ¬ 𝑥 ≤ (abs‘𝑁))) | |
| 10 | 8, 9 | sylan 283 | . . . . . . . . 9 ⊢ ((𝑁 ∈ ℤ ∧ 𝑥 ∈ ℤ) → ((abs‘𝑁) < 𝑥 ↔ ¬ 𝑥 ≤ (abs‘𝑁))) |
| 11 | 10 | rexbidva 2504 | . . . . . . . 8 ⊢ (𝑁 ∈ ℤ → (∃𝑥 ∈ ℤ (abs‘𝑁) < 𝑥 ↔ ∃𝑥 ∈ ℤ ¬ 𝑥 ≤ (abs‘𝑁))) |
| 12 | rexnalim 2496 | . . . . . . . 8 ⊢ (∃𝑥 ∈ ℤ ¬ 𝑥 ≤ (abs‘𝑁) → ¬ ∀𝑥 ∈ ℤ 𝑥 ≤ (abs‘𝑁)) | |
| 13 | 11, 12 | biimtrdi 163 | . . . . . . 7 ⊢ (𝑁 ∈ ℤ → (∃𝑥 ∈ ℤ (abs‘𝑁) < 𝑥 → ¬ ∀𝑥 ∈ ℤ 𝑥 ≤ (abs‘𝑁))) |
| 14 | 7, 13 | mpd 13 | . . . . . 6 ⊢ (𝑁 ∈ ℤ → ¬ ∀𝑥 ∈ ℤ 𝑥 ≤ (abs‘𝑁)) |
| 15 | 14 | adantl 277 | . . . . 5 ⊢ ((∀𝑥 ∈ ℤ 𝑥 ∥ 𝑁 ∧ 𝑁 ∈ ℤ) → ¬ ∀𝑥 ∈ ℤ 𝑥 ≤ (abs‘𝑁)) |
| 16 | ralim 2566 | . . . . . . 7 ⊢ (∀𝑥 ∈ ℤ (𝑥 ∥ 𝑁 → 𝑥 ≤ (abs‘𝑁)) → (∀𝑥 ∈ ℤ 𝑥 ∥ 𝑁 → ∀𝑥 ∈ ℤ 𝑥 ≤ (abs‘𝑁))) | |
| 17 | dvdsleabs 12200 | . . . . . . . . . 10 ⊢ ((𝑥 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (𝑥 ∥ 𝑁 → 𝑥 ≤ (abs‘𝑁))) | |
| 18 | 17 | 3expb 1207 | . . . . . . . . 9 ⊢ ((𝑥 ∈ ℤ ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑥 ∥ 𝑁 → 𝑥 ≤ (abs‘𝑁))) |
| 19 | 18 | expcom 116 | . . . . . . . 8 ⊢ ((𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (𝑥 ∈ ℤ → (𝑥 ∥ 𝑁 → 𝑥 ≤ (abs‘𝑁)))) |
| 20 | 19 | ralrimiv 2579 | . . . . . . 7 ⊢ ((𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → ∀𝑥 ∈ ℤ (𝑥 ∥ 𝑁 → 𝑥 ≤ (abs‘𝑁))) |
| 21 | 16, 20 | syl11 31 | . . . . . 6 ⊢ (∀𝑥 ∈ ℤ 𝑥 ∥ 𝑁 → ((𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → ∀𝑥 ∈ ℤ 𝑥 ≤ (abs‘𝑁))) |
| 22 | 21 | expdimp 259 | . . . . 5 ⊢ ((∀𝑥 ∈ ℤ 𝑥 ∥ 𝑁 ∧ 𝑁 ∈ ℤ) → (𝑁 ≠ 0 → ∀𝑥 ∈ ℤ 𝑥 ≤ (abs‘𝑁))) |
| 23 | 15, 22 | mtod 665 | . . . 4 ⊢ ((∀𝑥 ∈ ℤ 𝑥 ∥ 𝑁 ∧ 𝑁 ∈ ℤ) → ¬ 𝑁 ≠ 0) |
| 24 | 0z 9390 | . . . . . . 7 ⊢ 0 ∈ ℤ | |
| 25 | zdceq 9455 | . . . . . . 7 ⊢ ((𝑁 ∈ ℤ ∧ 0 ∈ ℤ) → DECID 𝑁 = 0) | |
| 26 | 24, 25 | mpan2 425 | . . . . . 6 ⊢ (𝑁 ∈ ℤ → DECID 𝑁 = 0) |
| 27 | nnedc 2382 | . . . . . 6 ⊢ (DECID 𝑁 = 0 → (¬ 𝑁 ≠ 0 ↔ 𝑁 = 0)) | |
| 28 | 26, 27 | syl 14 | . . . . 5 ⊢ (𝑁 ∈ ℤ → (¬ 𝑁 ≠ 0 ↔ 𝑁 = 0)) |
| 29 | 28 | adantl 277 | . . . 4 ⊢ ((∀𝑥 ∈ ℤ 𝑥 ∥ 𝑁 ∧ 𝑁 ∈ ℤ) → (¬ 𝑁 ≠ 0 ↔ 𝑁 = 0)) |
| 30 | 23, 29 | mpbid 147 | . . 3 ⊢ ((∀𝑥 ∈ ℤ 𝑥 ∥ 𝑁 ∧ 𝑁 ∈ ℤ) → 𝑁 = 0) |
| 31 | 30 | expcom 116 | . 2 ⊢ (𝑁 ∈ ℤ → (∀𝑥 ∈ ℤ 𝑥 ∥ 𝑁 → 𝑁 = 0)) |
| 32 | dvds0 12161 | . . . 4 ⊢ (𝑥 ∈ ℤ → 𝑥 ∥ 0) | |
| 33 | breq2 4051 | . . . 4 ⊢ (𝑁 = 0 → (𝑥 ∥ 𝑁 ↔ 𝑥 ∥ 0)) | |
| 34 | 32, 33 | imbitrrid 156 | . . 3 ⊢ (𝑁 = 0 → (𝑥 ∈ ℤ → 𝑥 ∥ 𝑁)) |
| 35 | 34 | ralrimiv 2579 | . 2 ⊢ (𝑁 = 0 → ∀𝑥 ∈ ℤ 𝑥 ∥ 𝑁) |
| 36 | 31, 35 | impbid1 142 | 1 ⊢ (𝑁 ∈ ℤ → (∀𝑥 ∈ ℤ 𝑥 ∥ 𝑁 ↔ 𝑁 = 0)) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 DECID wdc 836 = wceq 1373 ∈ wcel 2177 ≠ wne 2377 ∀wral 2485 ∃wrex 2486 ⊆ wss 3167 class class class wbr 4047 ‘cfv 5276 ℝcr 7931 0cc0 7932 < clt 8114 ≤ cle 8115 ℕcn 9043 ℤcz 9379 abscabs 11352 ∥ cdvds 12142 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4163 ax-sep 4166 ax-nul 4174 ax-pow 4222 ax-pr 4257 ax-un 4484 ax-setind 4589 ax-iinf 4640 ax-cnex 8023 ax-resscn 8024 ax-1cn 8025 ax-1re 8026 ax-icn 8027 ax-addcl 8028 ax-addrcl 8029 ax-mulcl 8030 ax-mulrcl 8031 ax-addcom 8032 ax-mulcom 8033 ax-addass 8034 ax-mulass 8035 ax-distr 8036 ax-i2m1 8037 ax-0lt1 8038 ax-1rid 8039 ax-0id 8040 ax-rnegex 8041 ax-precex 8042 ax-cnre 8043 ax-pre-ltirr 8044 ax-pre-ltwlin 8045 ax-pre-lttrn 8046 ax-pre-apti 8047 ax-pre-ltadd 8048 ax-pre-mulgt0 8049 ax-pre-mulext 8050 ax-arch 8051 ax-caucvg 8052 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3000 df-csb 3095 df-dif 3169 df-un 3171 df-in 3173 df-ss 3180 df-nul 3462 df-if 3573 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-uni 3853 df-int 3888 df-iun 3931 df-br 4048 df-opab 4110 df-mpt 4111 df-tr 4147 df-id 4344 df-po 4347 df-iso 4348 df-iord 4417 df-on 4419 df-ilim 4420 df-suc 4422 df-iom 4643 df-xp 4685 df-rel 4686 df-cnv 4687 df-co 4688 df-dm 4689 df-rn 4690 df-res 4691 df-ima 4692 df-iota 5237 df-fun 5278 df-fn 5279 df-f 5280 df-f1 5281 df-fo 5282 df-f1o 5283 df-fv 5284 df-riota 5906 df-ov 5954 df-oprab 5955 df-mpo 5956 df-1st 6233 df-2nd 6234 df-recs 6398 df-frec 6484 df-pnf 8116 df-mnf 8117 df-xr 8118 df-ltxr 8119 df-le 8120 df-sub 8252 df-neg 8253 df-reap 8655 df-ap 8662 df-div 8753 df-inn 9044 df-2 9102 df-3 9103 df-4 9104 df-n0 9303 df-z 9380 df-uz 9656 df-q 9748 df-rp 9783 df-seqfrec 10600 df-exp 10691 df-cj 11197 df-re 11198 df-im 11199 df-rsqrt 11353 df-abs 11354 df-dvds 12143 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |