ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  alzdvds GIF version

Theorem alzdvds 10761
Description: Only 0 is divisible by all integers. (Contributed by Paul Chapman, 21-Mar-2011.)
Assertion
Ref Expression
alzdvds (𝑁 ∈ ℤ → (∀𝑥 ∈ ℤ 𝑥𝑁𝑁 = 0))
Distinct variable group:   𝑥,𝑁

Proof of Theorem alzdvds
StepHypRef Expression
1 nnssz 8703 . . . . . . . 8 ℕ ⊆ ℤ
2 zcn 8691 . . . . . . . . . 10 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
32abscld 10513 . . . . . . . . 9 (𝑁 ∈ ℤ → (abs‘𝑁) ∈ ℝ)
4 arch 8606 . . . . . . . . 9 ((abs‘𝑁) ∈ ℝ → ∃𝑥 ∈ ℕ (abs‘𝑁) < 𝑥)
53, 4syl 14 . . . . . . . 8 (𝑁 ∈ ℤ → ∃𝑥 ∈ ℕ (abs‘𝑁) < 𝑥)
6 ssrexv 3075 . . . . . . . 8 (ℕ ⊆ ℤ → (∃𝑥 ∈ ℕ (abs‘𝑁) < 𝑥 → ∃𝑥 ∈ ℤ (abs‘𝑁) < 𝑥))
71, 5, 6mpsyl 64 . . . . . . 7 (𝑁 ∈ ℤ → ∃𝑥 ∈ ℤ (abs‘𝑁) < 𝑥)
8 zabscl 10418 . . . . . . . . . 10 (𝑁 ∈ ℤ → (abs‘𝑁) ∈ ℤ)
9 zltnle 8732 . . . . . . . . . 10 (((abs‘𝑁) ∈ ℤ ∧ 𝑥 ∈ ℤ) → ((abs‘𝑁) < 𝑥 ↔ ¬ 𝑥 ≤ (abs‘𝑁)))
108, 9sylan 277 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 𝑥 ∈ ℤ) → ((abs‘𝑁) < 𝑥 ↔ ¬ 𝑥 ≤ (abs‘𝑁)))
1110rexbidva 2373 . . . . . . . 8 (𝑁 ∈ ℤ → (∃𝑥 ∈ ℤ (abs‘𝑁) < 𝑥 ↔ ∃𝑥 ∈ ℤ ¬ 𝑥 ≤ (abs‘𝑁)))
12 rexnalim 2366 . . . . . . . 8 (∃𝑥 ∈ ℤ ¬ 𝑥 ≤ (abs‘𝑁) → ¬ ∀𝑥 ∈ ℤ 𝑥 ≤ (abs‘𝑁))
1311, 12syl6bi 161 . . . . . . 7 (𝑁 ∈ ℤ → (∃𝑥 ∈ ℤ (abs‘𝑁) < 𝑥 → ¬ ∀𝑥 ∈ ℤ 𝑥 ≤ (abs‘𝑁)))
147, 13mpd 13 . . . . . 6 (𝑁 ∈ ℤ → ¬ ∀𝑥 ∈ ℤ 𝑥 ≤ (abs‘𝑁))
1514adantl 271 . . . . 5 ((∀𝑥 ∈ ℤ 𝑥𝑁𝑁 ∈ ℤ) → ¬ ∀𝑥 ∈ ℤ 𝑥 ≤ (abs‘𝑁))
16 ralim 2430 . . . . . . 7 (∀𝑥 ∈ ℤ (𝑥𝑁𝑥 ≤ (abs‘𝑁)) → (∀𝑥 ∈ ℤ 𝑥𝑁 → ∀𝑥 ∈ ℤ 𝑥 ≤ (abs‘𝑁)))
17 dvdsleabs 10752 . . . . . . . . . 10 ((𝑥 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (𝑥𝑁𝑥 ≤ (abs‘𝑁)))
18173expb 1142 . . . . . . . . 9 ((𝑥 ∈ ℤ ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑥𝑁𝑥 ≤ (abs‘𝑁)))
1918expcom 114 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (𝑥 ∈ ℤ → (𝑥𝑁𝑥 ≤ (abs‘𝑁))))
2019ralrimiv 2441 . . . . . . 7 ((𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → ∀𝑥 ∈ ℤ (𝑥𝑁𝑥 ≤ (abs‘𝑁)))
2116, 20syl11 31 . . . . . 6 (∀𝑥 ∈ ℤ 𝑥𝑁 → ((𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → ∀𝑥 ∈ ℤ 𝑥 ≤ (abs‘𝑁)))
2221expdimp 255 . . . . 5 ((∀𝑥 ∈ ℤ 𝑥𝑁𝑁 ∈ ℤ) → (𝑁 ≠ 0 → ∀𝑥 ∈ ℤ 𝑥 ≤ (abs‘𝑁)))
2315, 22mtod 622 . . . 4 ((∀𝑥 ∈ ℤ 𝑥𝑁𝑁 ∈ ℤ) → ¬ 𝑁 ≠ 0)
24 0z 8697 . . . . . . 7 0 ∈ ℤ
25 zdceq 8758 . . . . . . 7 ((𝑁 ∈ ℤ ∧ 0 ∈ ℤ) → DECID 𝑁 = 0)
2624, 25mpan2 416 . . . . . 6 (𝑁 ∈ ℤ → DECID 𝑁 = 0)
27 nnedc 2256 . . . . . 6 (DECID 𝑁 = 0 → (¬ 𝑁 ≠ 0 ↔ 𝑁 = 0))
2826, 27syl 14 . . . . 5 (𝑁 ∈ ℤ → (¬ 𝑁 ≠ 0 ↔ 𝑁 = 0))
2928adantl 271 . . . 4 ((∀𝑥 ∈ ℤ 𝑥𝑁𝑁 ∈ ℤ) → (¬ 𝑁 ≠ 0 ↔ 𝑁 = 0))
3023, 29mpbid 145 . . 3 ((∀𝑥 ∈ ℤ 𝑥𝑁𝑁 ∈ ℤ) → 𝑁 = 0)
3130expcom 114 . 2 (𝑁 ∈ ℤ → (∀𝑥 ∈ ℤ 𝑥𝑁𝑁 = 0))
32 dvds0 10717 . . . 4 (𝑥 ∈ ℤ → 𝑥 ∥ 0)
33 breq2 3826 . . . 4 (𝑁 = 0 → (𝑥𝑁𝑥 ∥ 0))
3432, 33syl5ibr 154 . . 3 (𝑁 = 0 → (𝑥 ∈ ℤ → 𝑥𝑁))
3534ralrimiv 2441 . 2 (𝑁 = 0 → ∀𝑥 ∈ ℤ 𝑥𝑁)
3631, 35impbid1 140 1 (𝑁 ∈ ℤ → (∀𝑥 ∈ ℤ 𝑥𝑁𝑁 = 0))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 102  wb 103  DECID wdc 778   = wceq 1287  wcel 1436  wne 2251  wral 2355  wrex 2356  wss 2988   class class class wbr 3822  cfv 4983  cr 7296  0cc0 7297   < clt 7469  cle 7470  cn 8360  cz 8686  abscabs 10329  cdvds 10702
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1379  ax-7 1380  ax-gen 1381  ax-ie1 1425  ax-ie2 1426  ax-8 1438  ax-10 1439  ax-11 1440  ax-i12 1441  ax-bndl 1442  ax-4 1443  ax-13 1447  ax-14 1448  ax-17 1462  ax-i9 1466  ax-ial 1470  ax-i5r 1471  ax-ext 2067  ax-coll 3931  ax-sep 3934  ax-nul 3942  ax-pow 3986  ax-pr 4012  ax-un 4236  ax-setind 4328  ax-iinf 4378  ax-cnex 7383  ax-resscn 7384  ax-1cn 7385  ax-1re 7386  ax-icn 7387  ax-addcl 7388  ax-addrcl 7389  ax-mulcl 7390  ax-mulrcl 7391  ax-addcom 7392  ax-mulcom 7393  ax-addass 7394  ax-mulass 7395  ax-distr 7396  ax-i2m1 7397  ax-0lt1 7398  ax-1rid 7399  ax-0id 7400  ax-rnegex 7401  ax-precex 7402  ax-cnre 7403  ax-pre-ltirr 7404  ax-pre-ltwlin 7405  ax-pre-lttrn 7406  ax-pre-apti 7407  ax-pre-ltadd 7408  ax-pre-mulgt0 7409  ax-pre-mulext 7410  ax-arch 7411  ax-caucvg 7412
This theorem depends on definitions:  df-bi 115  df-dc 779  df-3or 923  df-3an 924  df-tru 1290  df-fal 1293  df-nf 1393  df-sb 1690  df-eu 1948  df-mo 1949  df-clab 2072  df-cleq 2078  df-clel 2081  df-nfc 2214  df-ne 2252  df-nel 2347  df-ral 2360  df-rex 2361  df-reu 2362  df-rmo 2363  df-rab 2364  df-v 2617  df-sbc 2830  df-csb 2923  df-dif 2990  df-un 2992  df-in 2994  df-ss 3001  df-nul 3276  df-if 3380  df-pw 3417  df-sn 3437  df-pr 3438  df-op 3440  df-uni 3639  df-int 3674  df-iun 3717  df-br 3823  df-opab 3877  df-mpt 3878  df-tr 3914  df-id 4096  df-po 4099  df-iso 4100  df-iord 4169  df-on 4171  df-ilim 4172  df-suc 4174  df-iom 4381  df-xp 4419  df-rel 4420  df-cnv 4421  df-co 4422  df-dm 4423  df-rn 4424  df-res 4425  df-ima 4426  df-iota 4948  df-fun 4985  df-fn 4986  df-f 4987  df-f1 4988  df-fo 4989  df-f1o 4990  df-fv 4991  df-riota 5571  df-ov 5618  df-oprab 5619  df-mpt2 5620  df-1st 5870  df-2nd 5871  df-recs 6026  df-frec 6112  df-pnf 7471  df-mnf 7472  df-xr 7473  df-ltxr 7474  df-le 7475  df-sub 7602  df-neg 7603  df-reap 7996  df-ap 8003  df-div 8082  df-inn 8361  df-2 8419  df-3 8420  df-4 8421  df-n0 8610  df-z 8687  df-uz 8955  df-q 9040  df-rp 9070  df-iseq 9783  df-iexp 9857  df-cj 10175  df-re 10176  df-im 10177  df-rsqrt 10330  df-abs 10331  df-dvds 10703
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator