ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  syl212anc GIF version

Theorem syl212anc 1243
Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.)
Hypotheses
Ref Expression
sylXanc.1 (𝜑𝜓)
sylXanc.2 (𝜑𝜒)
sylXanc.3 (𝜑𝜃)
sylXanc.4 (𝜑𝜏)
sylXanc.5 (𝜑𝜂)
syl212anc.6 (((𝜓𝜒) ∧ 𝜃 ∧ (𝜏𝜂)) → 𝜁)
Assertion
Ref Expression
syl212anc (𝜑𝜁)

Proof of Theorem syl212anc
StepHypRef Expression
1 sylXanc.1 . 2 (𝜑𝜓)
2 sylXanc.2 . 2 (𝜑𝜒)
3 sylXanc.3 . 2 (𝜑𝜃)
4 sylXanc.4 . . 3 (𝜑𝜏)
5 sylXanc.5 . . 3 (𝜑𝜂)
64, 5jca 304 . 2 (𝜑 → (𝜏𝜂))
7 syl212anc.6 . 2 (((𝜓𝜒) ∧ 𝜃 ∧ (𝜏𝜂)) → 𝜁)
81, 2, 3, 6, 7syl211anc 1239 1 (𝜑𝜁)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  w3a 973
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107
This theorem depends on definitions:  df-bi 116  df-3an 975
This theorem is referenced by:  rmob  3047
  Copyright terms: Public domain W3C validator