Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  syl122anc GIF version

Theorem syl122anc 1226
 Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.)
Hypotheses
Ref Expression
sylXanc.1 (𝜑𝜓)
sylXanc.2 (𝜑𝜒)
sylXanc.3 (𝜑𝜃)
sylXanc.4 (𝜑𝜏)
sylXanc.5 (𝜑𝜂)
syl122anc.6 ((𝜓 ∧ (𝜒𝜃) ∧ (𝜏𝜂)) → 𝜁)
Assertion
Ref Expression
syl122anc (𝜑𝜁)

Proof of Theorem syl122anc
StepHypRef Expression
1 sylXanc.1 . 2 (𝜑𝜓)
2 sylXanc.2 . 2 (𝜑𝜒)
3 sylXanc.3 . 2 (𝜑𝜃)
4 sylXanc.4 . . 3 (𝜑𝜏)
5 sylXanc.5 . . 3 (𝜑𝜂)
64, 5jca 304 . 2 (𝜑 → (𝜏𝜂))
7 syl122anc.6 . 2 ((𝜓 ∧ (𝜒𝜃) ∧ (𝜏𝜂)) → 𝜁)
81, 2, 3, 6, 7syl121anc 1222 1 (𝜑𝜁)
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 103   ∧ w3a 963 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107 This theorem depends on definitions:  df-bi 116  df-3an 965 This theorem is referenced by:  divdiv32apd  8620  divcanap5d  8621  divcanap7d  8623  divdivap1d  8626  divdivap2d  8627  seq3coll  10637  cau3lem  10938  summodclem2a  11202  prodmodclem2a  11397  prmind2  11857  divnumden  11930  blss2ps  12634  blss2  12635  blssps  12655  blss  12656  xmeter  12664
 Copyright terms: Public domain W3C validator