ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  syl122anc GIF version

Theorem syl122anc 1280
Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.)
Hypotheses
Ref Expression
sylXanc.1 (𝜑𝜓)
sylXanc.2 (𝜑𝜒)
sylXanc.3 (𝜑𝜃)
sylXanc.4 (𝜑𝜏)
sylXanc.5 (𝜑𝜂)
syl122anc.6 ((𝜓 ∧ (𝜒𝜃) ∧ (𝜏𝜂)) → 𝜁)
Assertion
Ref Expression
syl122anc (𝜑𝜁)

Proof of Theorem syl122anc
StepHypRef Expression
1 sylXanc.1 . 2 (𝜑𝜓)
2 sylXanc.2 . 2 (𝜑𝜒)
3 sylXanc.3 . 2 (𝜑𝜃)
4 sylXanc.4 . . 3 (𝜑𝜏)
5 sylXanc.5 . . 3 (𝜑𝜂)
64, 5jca 306 . 2 (𝜑 → (𝜏𝜂))
7 syl122anc.6 . 2 ((𝜓 ∧ (𝜒𝜃) ∧ (𝜏𝜂)) → 𝜁)
81, 2, 3, 6, 7syl121anc 1276 1 (𝜑𝜁)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 1002
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117  df-3an 1004
This theorem is referenced by:  divdiv32apd  8951  divcanap5d  8952  divcanap7d  8954  divdivap1d  8957  divdivap2d  8958  seq3coll  11051  cau3lem  11611  summodclem2a  11878  prodmodclem2a  12073  prmind2  12628  divnumden  12704  pceulem  12803  pcqmul  12812  pcqdiv  12816  pcexp  12818  pcaddlem  12848  pcbc  12860  abladdsub4  13837  ablpnpcan  13843  lmodvs1  14265  blss2ps  15065  blss2  15066  blssps  15086  blss  15087  xmeter  15095  lgsdi  15701
  Copyright terms: Public domain W3C validator