| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > syl122anc | GIF version | ||
| Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
| Ref | Expression |
|---|---|
| sylXanc.1 | ⊢ (𝜑 → 𝜓) |
| sylXanc.2 | ⊢ (𝜑 → 𝜒) |
| sylXanc.3 | ⊢ (𝜑 → 𝜃) |
| sylXanc.4 | ⊢ (𝜑 → 𝜏) |
| sylXanc.5 | ⊢ (𝜑 → 𝜂) |
| syl122anc.6 | ⊢ ((𝜓 ∧ (𝜒 ∧ 𝜃) ∧ (𝜏 ∧ 𝜂)) → 𝜁) |
| Ref | Expression |
|---|---|
| syl122anc | ⊢ (𝜑 → 𝜁) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylXanc.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 2 | sylXanc.2 | . 2 ⊢ (𝜑 → 𝜒) | |
| 3 | sylXanc.3 | . 2 ⊢ (𝜑 → 𝜃) | |
| 4 | sylXanc.4 | . . 3 ⊢ (𝜑 → 𝜏) | |
| 5 | sylXanc.5 | . . 3 ⊢ (𝜑 → 𝜂) | |
| 6 | 4, 5 | jca 306 | . 2 ⊢ (𝜑 → (𝜏 ∧ 𝜂)) |
| 7 | syl122anc.6 | . 2 ⊢ ((𝜓 ∧ (𝜒 ∧ 𝜃) ∧ (𝜏 ∧ 𝜂)) → 𝜁) | |
| 8 | 1, 2, 3, 6, 7 | syl121anc 1255 | 1 ⊢ (𝜑 → 𝜁) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 981 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 983 |
| This theorem is referenced by: divdiv32apd 8902 divcanap5d 8903 divcanap7d 8905 divdivap1d 8908 divdivap2d 8909 seq3coll 11000 cau3lem 11475 summodclem2a 11742 prodmodclem2a 11937 prmind2 12492 divnumden 12568 pceulem 12667 pcqmul 12676 pcqdiv 12680 pcexp 12682 pcaddlem 12712 pcbc 12724 abladdsub4 13700 ablpnpcan 13706 lmodvs1 14128 blss2ps 14928 blss2 14929 blssps 14949 blss 14950 xmeter 14958 lgsdi 15564 |
| Copyright terms: Public domain | W3C validator |