ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  syl122anc GIF version

Theorem syl122anc 1258
Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.)
Hypotheses
Ref Expression
sylXanc.1 (𝜑𝜓)
sylXanc.2 (𝜑𝜒)
sylXanc.3 (𝜑𝜃)
sylXanc.4 (𝜑𝜏)
sylXanc.5 (𝜑𝜂)
syl122anc.6 ((𝜓 ∧ (𝜒𝜃) ∧ (𝜏𝜂)) → 𝜁)
Assertion
Ref Expression
syl122anc (𝜑𝜁)

Proof of Theorem syl122anc
StepHypRef Expression
1 sylXanc.1 . 2 (𝜑𝜓)
2 sylXanc.2 . 2 (𝜑𝜒)
3 sylXanc.3 . 2 (𝜑𝜃)
4 sylXanc.4 . . 3 (𝜑𝜏)
5 sylXanc.5 . . 3 (𝜑𝜂)
64, 5jca 306 . 2 (𝜑 → (𝜏𝜂))
7 syl122anc.6 . 2 ((𝜓 ∧ (𝜒𝜃) ∧ (𝜏𝜂)) → 𝜁)
81, 2, 3, 6, 7syl121anc 1254 1 (𝜑𝜁)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 980
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117  df-3an 982
This theorem is referenced by:  divdiv32apd  8835  divcanap5d  8836  divcanap7d  8838  divdivap1d  8841  divdivap2d  8842  seq3coll  10913  cau3lem  11258  summodclem2a  11524  prodmodclem2a  11719  prmind2  12258  divnumden  12334  pceulem  12432  pcqmul  12441  pcqdiv  12445  pcexp  12447  pcaddlem  12477  pcbc  12489  abladdsub4  13384  ablpnpcan  13390  lmodvs1  13812  blss2ps  14574  blss2  14575  blssps  14595  blss  14596  xmeter  14604  lgsdi  15153
  Copyright terms: Public domain W3C validator