| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > syl122anc | GIF version | ||
| Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
| Ref | Expression |
|---|---|
| sylXanc.1 | ⊢ (𝜑 → 𝜓) |
| sylXanc.2 | ⊢ (𝜑 → 𝜒) |
| sylXanc.3 | ⊢ (𝜑 → 𝜃) |
| sylXanc.4 | ⊢ (𝜑 → 𝜏) |
| sylXanc.5 | ⊢ (𝜑 → 𝜂) |
| syl122anc.6 | ⊢ ((𝜓 ∧ (𝜒 ∧ 𝜃) ∧ (𝜏 ∧ 𝜂)) → 𝜁) |
| Ref | Expression |
|---|---|
| syl122anc | ⊢ (𝜑 → 𝜁) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylXanc.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 2 | sylXanc.2 | . 2 ⊢ (𝜑 → 𝜒) | |
| 3 | sylXanc.3 | . 2 ⊢ (𝜑 → 𝜃) | |
| 4 | sylXanc.4 | . . 3 ⊢ (𝜑 → 𝜏) | |
| 5 | sylXanc.5 | . . 3 ⊢ (𝜑 → 𝜂) | |
| 6 | 4, 5 | jca 306 | . 2 ⊢ (𝜑 → (𝜏 ∧ 𝜂)) |
| 7 | syl122anc.6 | . 2 ⊢ ((𝜓 ∧ (𝜒 ∧ 𝜃) ∧ (𝜏 ∧ 𝜂)) → 𝜁) | |
| 8 | 1, 2, 3, 6, 7 | syl121anc 1276 | 1 ⊢ (𝜑 → 𝜁) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 1002 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 |
| This theorem is referenced by: divdiv32apd 8951 divcanap5d 8952 divcanap7d 8954 divdivap1d 8957 divdivap2d 8958 seq3coll 11051 cau3lem 11611 summodclem2a 11878 prodmodclem2a 12073 prmind2 12628 divnumden 12704 pceulem 12803 pcqmul 12812 pcqdiv 12816 pcexp 12818 pcaddlem 12848 pcbc 12860 abladdsub4 13837 ablpnpcan 13843 lmodvs1 14265 blss2ps 15065 blss2 15066 blssps 15086 blss 15087 xmeter 15095 lgsdi 15701 |
| Copyright terms: Public domain | W3C validator |