ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  syl221anc GIF version

Theorem syl221anc 1210
Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.)
Hypotheses
Ref Expression
sylXanc.1 (𝜑𝜓)
sylXanc.2 (𝜑𝜒)
sylXanc.3 (𝜑𝜃)
sylXanc.4 (𝜑𝜏)
sylXanc.5 (𝜑𝜂)
syl221anc.6 (((𝜓𝜒) ∧ (𝜃𝜏) ∧ 𝜂) → 𝜁)
Assertion
Ref Expression
syl221anc (𝜑𝜁)

Proof of Theorem syl221anc
StepHypRef Expression
1 sylXanc.1 . 2 (𝜑𝜓)
2 sylXanc.2 . 2 (𝜑𝜒)
3 sylXanc.3 . . 3 (𝜑𝜃)
4 sylXanc.4 . . 3 (𝜑𝜏)
53, 4jca 302 . 2 (𝜑 → (𝜃𝜏))
6 sylXanc.5 . 2 (𝜑𝜂)
7 syl221anc.6 . 2 (((𝜓𝜒) ∧ (𝜃𝜏) ∧ 𝜂) → 𝜁)
81, 2, 5, 6, 7syl211anc 1205 1 (𝜑𝜁)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  w3a 945
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107
This theorem depends on definitions:  df-bi 116  df-3an 947
This theorem is referenced by:  syl222anc  1215  vtocldf  2708  dmdcanapd  8490  exprecap  10224  xrbdtri  10934  2strbasg  11900  2stropg  11901  cnptoprest  12247  blssps  12413  blss  12414  metequiv2  12482  xmettx  12496
  Copyright terms: Public domain W3C validator