ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rmob GIF version

Theorem rmob 3082
Description: Consequence of "at most one", using implicit substitution. (Contributed by NM, 2-Jan-2015.) (Revised by NM, 16-Jun-2017.)
Hypotheses
Ref Expression
rmoi.b (𝑥 = 𝐵 → (𝜑𝜓))
rmoi.c (𝑥 = 𝐶 → (𝜑𝜒))
Assertion
Ref Expression
rmob ((∃*𝑥𝐴 𝜑 ∧ (𝐵𝐴𝜓)) → (𝐵 = 𝐶 ↔ (𝐶𝐴𝜒)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶   𝜓,𝑥   𝜒,𝑥
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem rmob
StepHypRef Expression
1 df-rmo 2483 . 2 (∃*𝑥𝐴 𝜑 ↔ ∃*𝑥(𝑥𝐴𝜑))
2 simprl 529 . . . 4 ((∃*𝑥(𝑥𝐴𝜑) ∧ (𝐵𝐴𝜓)) → 𝐵𝐴)
3 eleq1 2259 . . . 4 (𝐵 = 𝐶 → (𝐵𝐴𝐶𝐴))
42, 3syl5ibcom 155 . . 3 ((∃*𝑥(𝑥𝐴𝜑) ∧ (𝐵𝐴𝜓)) → (𝐵 = 𝐶𝐶𝐴))
5 simpl 109 . . . 4 ((𝐶𝐴𝜒) → 𝐶𝐴)
65a1i 9 . . 3 ((∃*𝑥(𝑥𝐴𝜑) ∧ (𝐵𝐴𝜓)) → ((𝐶𝐴𝜒) → 𝐶𝐴))
7 simplrl 535 . . . . 5 (((∃*𝑥(𝑥𝐴𝜑) ∧ (𝐵𝐴𝜓)) ∧ 𝐶𝐴) → 𝐵𝐴)
8 simpr 110 . . . . 5 (((∃*𝑥(𝑥𝐴𝜑) ∧ (𝐵𝐴𝜓)) ∧ 𝐶𝐴) → 𝐶𝐴)
9 simpll 527 . . . . 5 (((∃*𝑥(𝑥𝐴𝜑) ∧ (𝐵𝐴𝜓)) ∧ 𝐶𝐴) → ∃*𝑥(𝑥𝐴𝜑))
10 simplrr 536 . . . . 5 (((∃*𝑥(𝑥𝐴𝜑) ∧ (𝐵𝐴𝜓)) ∧ 𝐶𝐴) → 𝜓)
11 eleq1 2259 . . . . . . 7 (𝑥 = 𝐵 → (𝑥𝐴𝐵𝐴))
12 rmoi.b . . . . . . 7 (𝑥 = 𝐵 → (𝜑𝜓))
1311, 12anbi12d 473 . . . . . 6 (𝑥 = 𝐵 → ((𝑥𝐴𝜑) ↔ (𝐵𝐴𝜓)))
14 eleq1 2259 . . . . . . 7 (𝑥 = 𝐶 → (𝑥𝐴𝐶𝐴))
15 rmoi.c . . . . . . 7 (𝑥 = 𝐶 → (𝜑𝜒))
1614, 15anbi12d 473 . . . . . 6 (𝑥 = 𝐶 → ((𝑥𝐴𝜑) ↔ (𝐶𝐴𝜒)))
1713, 16mob 2946 . . . . 5 (((𝐵𝐴𝐶𝐴) ∧ ∃*𝑥(𝑥𝐴𝜑) ∧ (𝐵𝐴𝜓)) → (𝐵 = 𝐶 ↔ (𝐶𝐴𝜒)))
187, 8, 9, 7, 10, 17syl212anc 1259 . . . 4 (((∃*𝑥(𝑥𝐴𝜑) ∧ (𝐵𝐴𝜓)) ∧ 𝐶𝐴) → (𝐵 = 𝐶 ↔ (𝐶𝐴𝜒)))
1918ex 115 . . 3 ((∃*𝑥(𝑥𝐴𝜑) ∧ (𝐵𝐴𝜓)) → (𝐶𝐴 → (𝐵 = 𝐶 ↔ (𝐶𝐴𝜒))))
204, 6, 19pm5.21ndd 706 . 2 ((∃*𝑥(𝑥𝐴𝜑) ∧ (𝐵𝐴𝜓)) → (𝐵 = 𝐶 ↔ (𝐶𝐴𝜒)))
211, 20sylanb 284 1 ((∃*𝑥𝐴 𝜑 ∧ (𝐵𝐴𝜓)) → (𝐵 = 𝐶 ↔ (𝐶𝐴𝜒)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  ∃*wmo 2046  wcel 2167  ∃*wrmo 2478
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-rmo 2483  df-v 2765
This theorem is referenced by:  rmoi  3083
  Copyright terms: Public domain W3C validator