| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > syl2ani | GIF version | ||
| Description: A syllogism inference. (Contributed by NM, 3-Aug-1999.) | 
| Ref | Expression | 
|---|---|
| syl2ani.1 | ⊢ (𝜑 → 𝜒) | 
| syl2ani.2 | ⊢ (𝜂 → 𝜃) | 
| syl2ani.3 | ⊢ (𝜓 → ((𝜒 ∧ 𝜃) → 𝜏)) | 
| Ref | Expression | 
|---|---|
| syl2ani | ⊢ (𝜓 → ((𝜑 ∧ 𝜂) → 𝜏)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | syl2ani.1 | . 2 ⊢ (𝜑 → 𝜒) | |
| 2 | syl2ani.2 | . . 3 ⊢ (𝜂 → 𝜃) | |
| 3 | syl2ani.3 | . . 3 ⊢ (𝜓 → ((𝜒 ∧ 𝜃) → 𝜏)) | |
| 4 | 2, 3 | sylan2i 407 | . 2 ⊢ (𝜓 → ((𝜒 ∧ 𝜂) → 𝜏)) | 
| 5 | 1, 4 | sylani 406 | 1 ⊢ (𝜓 → ((𝜑 ∧ 𝜂) → 𝜏)) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ wa 104 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 | 
| This theorem depends on definitions: df-bi 117 | 
| This theorem is referenced by: disjxp1 6294 mapen 6907 mgmidmo 13015 | 
| Copyright terms: Public domain | W3C validator |