ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  syl2ani GIF version

Theorem syl2ani 406
Description: A syllogism inference. (Contributed by NM, 3-Aug-1999.)
Hypotheses
Ref Expression
syl2ani.1 (𝜑𝜒)
syl2ani.2 (𝜂𝜃)
syl2ani.3 (𝜓 → ((𝜒𝜃) → 𝜏))
Assertion
Ref Expression
syl2ani (𝜓 → ((𝜑𝜂) → 𝜏))

Proof of Theorem syl2ani
StepHypRef Expression
1 syl2ani.1 . 2 (𝜑𝜒)
2 syl2ani.2 . . 3 (𝜂𝜃)
3 syl2ani.3 . . 3 (𝜓 → ((𝜒𝜃) → 𝜏))
42, 3sylan2i 405 . 2 (𝜓 → ((𝜒𝜂) → 𝜏))
51, 4sylani 404 1 (𝜓 → ((𝜑𝜂) → 𝜏))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  disjxp1  6204  mapen  6812  mgmidmo  12603
  Copyright terms: Public domain W3C validator