ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mgmidmo GIF version

Theorem mgmidmo 12626
Description: A two-sided identity element is unique (if it exists) in any magma. (Contributed by Mario Carneiro, 7-Dec-2014.) (Revised by NM, 17-Jun-2017.)
Assertion
Ref Expression
mgmidmo ∃*𝑢𝐵𝑥𝐵 ((𝑢 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑢) = 𝑥)
Distinct variable groups:   𝑥,𝑢,𝐵   𝑢, + ,𝑥

Proof of Theorem mgmidmo
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 simpl 108 . . . . 5 (((𝑢 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑢) = 𝑥) → (𝑢 + 𝑥) = 𝑥)
21ralimi 2533 . . . 4 (∀𝑥𝐵 ((𝑢 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑢) = 𝑥) → ∀𝑥𝐵 (𝑢 + 𝑥) = 𝑥)
3 simpr 109 . . . . 5 (((𝑤 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑤) = 𝑥) → (𝑥 + 𝑤) = 𝑥)
43ralimi 2533 . . . 4 (∀𝑥𝐵 ((𝑤 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑤) = 𝑥) → ∀𝑥𝐵 (𝑥 + 𝑤) = 𝑥)
5 oveq1 5860 . . . . . . . . 9 (𝑥 = 𝑢 → (𝑥 + 𝑤) = (𝑢 + 𝑤))
6 id 19 . . . . . . . . 9 (𝑥 = 𝑢𝑥 = 𝑢)
75, 6eqeq12d 2185 . . . . . . . 8 (𝑥 = 𝑢 → ((𝑥 + 𝑤) = 𝑥 ↔ (𝑢 + 𝑤) = 𝑢))
87rspcva 2832 . . . . . . 7 ((𝑢𝐵 ∧ ∀𝑥𝐵 (𝑥 + 𝑤) = 𝑥) → (𝑢 + 𝑤) = 𝑢)
9 oveq2 5861 . . . . . . . . 9 (𝑥 = 𝑤 → (𝑢 + 𝑥) = (𝑢 + 𝑤))
10 id 19 . . . . . . . . 9 (𝑥 = 𝑤𝑥 = 𝑤)
119, 10eqeq12d 2185 . . . . . . . 8 (𝑥 = 𝑤 → ((𝑢 + 𝑥) = 𝑥 ↔ (𝑢 + 𝑤) = 𝑤))
1211rspcva 2832 . . . . . . 7 ((𝑤𝐵 ∧ ∀𝑥𝐵 (𝑢 + 𝑥) = 𝑥) → (𝑢 + 𝑤) = 𝑤)
138, 12sylan9req 2224 . . . . . 6 (((𝑢𝐵 ∧ ∀𝑥𝐵 (𝑥 + 𝑤) = 𝑥) ∧ (𝑤𝐵 ∧ ∀𝑥𝐵 (𝑢 + 𝑥) = 𝑥)) → 𝑢 = 𝑤)
1413an42s 584 . . . . 5 (((𝑢𝐵𝑤𝐵) ∧ (∀𝑥𝐵 (𝑢 + 𝑥) = 𝑥 ∧ ∀𝑥𝐵 (𝑥 + 𝑤) = 𝑥)) → 𝑢 = 𝑤)
1514ex 114 . . . 4 ((𝑢𝐵𝑤𝐵) → ((∀𝑥𝐵 (𝑢 + 𝑥) = 𝑥 ∧ ∀𝑥𝐵 (𝑥 + 𝑤) = 𝑥) → 𝑢 = 𝑤))
162, 4, 15syl2ani 406 . . 3 ((𝑢𝐵𝑤𝐵) → ((∀𝑥𝐵 ((𝑢 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑢) = 𝑥) ∧ ∀𝑥𝐵 ((𝑤 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑤) = 𝑥)) → 𝑢 = 𝑤))
1716rgen2 2556 . 2 𝑢𝐵𝑤𝐵 ((∀𝑥𝐵 ((𝑢 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑢) = 𝑥) ∧ ∀𝑥𝐵 ((𝑤 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑤) = 𝑥)) → 𝑢 = 𝑤)
18 oveq1 5860 . . . . 5 (𝑢 = 𝑤 → (𝑢 + 𝑥) = (𝑤 + 𝑥))
1918eqeq1d 2179 . . . 4 (𝑢 = 𝑤 → ((𝑢 + 𝑥) = 𝑥 ↔ (𝑤 + 𝑥) = 𝑥))
2019ovanraleqv 5877 . . 3 (𝑢 = 𝑤 → (∀𝑥𝐵 ((𝑢 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑢) = 𝑥) ↔ ∀𝑥𝐵 ((𝑤 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑤) = 𝑥)))
2120rmo4 2923 . 2 (∃*𝑢𝐵𝑥𝐵 ((𝑢 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑢) = 𝑥) ↔ ∀𝑢𝐵𝑤𝐵 ((∀𝑥𝐵 ((𝑢 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑢) = 𝑥) ∧ ∀𝑥𝐵 ((𝑤 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑤) = 𝑥)) → 𝑢 = 𝑤))
2217, 21mpbir 145 1 ∃*𝑢𝐵𝑥𝐵 ((𝑢 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑢) = 𝑥)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1348  wcel 2141  wral 2448  ∃*wrmo 2451  (class class class)co 5853
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-rmo 2456  df-v 2732  df-un 3125  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-iota 5160  df-fv 5206  df-ov 5856
This theorem is referenced by:  ismgmid  12631  mndideu  12662
  Copyright terms: Public domain W3C validator