| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sylan9 | GIF version | ||
| Description: Nested syllogism inference conjoining dissimilar antecedents. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 7-May-2011.) |
| Ref | Expression |
|---|---|
| sylan9.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| sylan9.2 | ⊢ (𝜃 → (𝜒 → 𝜏)) |
| Ref | Expression |
|---|---|
| sylan9 | ⊢ ((𝜑 ∧ 𝜃) → (𝜓 → 𝜏)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylan9.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | sylan9.2 | . . 3 ⊢ (𝜃 → (𝜒 → 𝜏)) | |
| 3 | 1, 2 | syl9 72 | . 2 ⊢ (𝜑 → (𝜃 → (𝜓 → 𝜏))) |
| 4 | 3 | imp 124 | 1 ⊢ ((𝜑 ∧ 𝜃) → (𝜓 → 𝜏)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 |
| This theorem is referenced by: sbequi 1853 rspc2 2879 rspc3v 2884 copsexg 4278 chfnrn 5676 ffnfv 5723 f1elima 5823 smoel2 6370 th3q 6708 fiintim 7001 addnnnq0 7535 mulnnnq0 7536 addsrpr 7831 mulsrpr 7832 cau3lem 11298 rescncf 14925 |
| Copyright terms: Public domain | W3C validator |