ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sylan9 GIF version

Theorem sylan9 409
Description: Nested syllogism inference conjoining dissimilar antecedents. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 7-May-2011.)
Hypotheses
Ref Expression
sylan9.1 (𝜑 → (𝜓𝜒))
sylan9.2 (𝜃 → (𝜒𝜏))
Assertion
Ref Expression
sylan9 ((𝜑𝜃) → (𝜓𝜏))

Proof of Theorem sylan9
StepHypRef Expression
1 sylan9.1 . . 3 (𝜑 → (𝜓𝜒))
2 sylan9.2 . . 3 (𝜃 → (𝜒𝜏))
31, 2syl9 72 . 2 (𝜑 → (𝜃 → (𝜓𝜏)))
43imp 124 1 ((𝜑𝜃) → (𝜓𝜏))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107
This theorem is referenced by:  sbequi  1850  rspc2  2875  rspc3v  2880  copsexg  4273  chfnrn  5669  ffnfv  5716  f1elima  5816  smoel2  6356  th3q  6694  fiintim  6985  addnnnq0  7509  mulnnnq0  7510  addsrpr  7805  mulsrpr  7806  cau3lem  11258  rescncf  14736
  Copyright terms: Public domain W3C validator