ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sylan9 GIF version

Theorem sylan9 409
Description: Nested syllogism inference conjoining dissimilar antecedents. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 7-May-2011.)
Hypotheses
Ref Expression
sylan9.1 (𝜑 → (𝜓𝜒))
sylan9.2 (𝜃 → (𝜒𝜏))
Assertion
Ref Expression
sylan9 ((𝜑𝜃) → (𝜓𝜏))

Proof of Theorem sylan9
StepHypRef Expression
1 sylan9.1 . . 3 (𝜑 → (𝜓𝜒))
2 sylan9.2 . . 3 (𝜃 → (𝜒𝜏))
31, 2syl9 72 . 2 (𝜑 → (𝜃 → (𝜓𝜏)))
43imp 124 1 ((𝜑𝜃) → (𝜓𝜏))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107
This theorem is referenced by:  sbequi  1861  rspc2  2887  rspc3v  2892  copsexg  4287  chfnrn  5685  ffnfv  5732  f1elima  5832  smoel2  6379  th3q  6717  fiintim  7010  addnnnq0  7544  mulnnnq0  7545  addsrpr  7840  mulsrpr  7841  cau3lem  11344  rescncf  14971
  Copyright terms: Public domain W3C validator