| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > sylan9 | GIF version | ||
| Description: Nested syllogism inference conjoining dissimilar antecedents. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 7-May-2011.) | 
| Ref | Expression | 
|---|---|
| sylan9.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) | 
| sylan9.2 | ⊢ (𝜃 → (𝜒 → 𝜏)) | 
| Ref | Expression | 
|---|---|
| sylan9 | ⊢ ((𝜑 ∧ 𝜃) → (𝜓 → 𝜏)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | sylan9.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | sylan9.2 | . . 3 ⊢ (𝜃 → (𝜒 → 𝜏)) | |
| 3 | 1, 2 | syl9 72 | . 2 ⊢ (𝜑 → (𝜃 → (𝜓 → 𝜏))) | 
| 4 | 3 | imp 124 | 1 ⊢ ((𝜑 ∧ 𝜃) → (𝜓 → 𝜏)) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ wa 104 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 | 
| This theorem is referenced by: sbequi 1853 rspc2 2879 rspc3v 2884 copsexg 4277 chfnrn 5673 ffnfv 5720 f1elima 5820 smoel2 6361 th3q 6699 fiintim 6992 addnnnq0 7516 mulnnnq0 7517 addsrpr 7812 mulsrpr 7813 cau3lem 11279 rescncf 14817 | 
| Copyright terms: Public domain | W3C validator |