ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sylan9 GIF version

Theorem sylan9 409
Description: Nested syllogism inference conjoining dissimilar antecedents. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 7-May-2011.)
Hypotheses
Ref Expression
sylan9.1 (𝜑 → (𝜓𝜒))
sylan9.2 (𝜃 → (𝜒𝜏))
Assertion
Ref Expression
sylan9 ((𝜑𝜃) → (𝜓𝜏))

Proof of Theorem sylan9
StepHypRef Expression
1 sylan9.1 . . 3 (𝜑 → (𝜓𝜒))
2 sylan9.2 . . 3 (𝜃 → (𝜒𝜏))
31, 2syl9 72 . 2 (𝜑 → (𝜃 → (𝜓𝜏)))
43imp 124 1 ((𝜑𝜃) → (𝜓𝜏))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107
This theorem is referenced by:  sbequi  1885  rspc2  2918  rspc3v  2923  copsexg  4329  chfnrn  5745  ffnfv  5792  f1elima  5896  smoel2  6447  th3q  6785  fiintim  7089  addnnnq0  7632  mulnnnq0  7633  addsrpr  7928  mulsrpr  7929  cau3lem  11620  rescncf  15249
  Copyright terms: Public domain W3C validator