![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sylan9 | GIF version |
Description: Nested syllogism inference conjoining dissimilar antecedents. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 7-May-2011.) |
Ref | Expression |
---|---|
sylan9.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
sylan9.2 | ⊢ (𝜃 → (𝜒 → 𝜏)) |
Ref | Expression |
---|---|
sylan9 | ⊢ ((𝜑 ∧ 𝜃) → (𝜓 → 𝜏)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylan9.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | sylan9.2 | . . 3 ⊢ (𝜃 → (𝜒 → 𝜏)) | |
3 | 1, 2 | syl9 72 | . 2 ⊢ (𝜑 → (𝜃 → (𝜓 → 𝜏))) |
4 | 3 | imp 124 | 1 ⊢ ((𝜑 ∧ 𝜃) → (𝜓 → 𝜏)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 |
This theorem is referenced by: sbequi 1839 rspc2 2854 rspc3v 2859 copsexg 4246 chfnrn 5629 ffnfv 5676 f1elima 5776 smoel2 6306 th3q 6642 fiintim 6930 addnnnq0 7450 mulnnnq0 7451 addsrpr 7746 mulsrpr 7747 cau3lem 11125 rescncf 14153 |
Copyright terms: Public domain | W3C validator |