ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sylan9 GIF version

Theorem sylan9 409
Description: Nested syllogism inference conjoining dissimilar antecedents. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 7-May-2011.)
Hypotheses
Ref Expression
sylan9.1 (𝜑 → (𝜓𝜒))
sylan9.2 (𝜃 → (𝜒𝜏))
Assertion
Ref Expression
sylan9 ((𝜑𝜃) → (𝜓𝜏))

Proof of Theorem sylan9
StepHypRef Expression
1 sylan9.1 . . 3 (𝜑 → (𝜓𝜒))
2 sylan9.2 . . 3 (𝜃 → (𝜒𝜏))
31, 2syl9 72 . 2 (𝜑 → (𝜃 → (𝜓𝜏)))
43imp 124 1 ((𝜑𝜃) → (𝜓𝜏))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107
This theorem is referenced by:  sbequi  1839  rspc2  2854  rspc3v  2859  copsexg  4246  chfnrn  5629  ffnfv  5676  f1elima  5776  smoel2  6306  th3q  6642  fiintim  6930  addnnnq0  7450  mulnnnq0  7451  addsrpr  7746  mulsrpr  7747  cau3lem  11125  rescncf  14153
  Copyright terms: Public domain W3C validator