ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mapen GIF version

Theorem mapen 6824
Description: Two set exponentiations are equinumerous when their bases and exponents are equinumerous. Theorem 6H(c) of [Enderton] p. 139. (Contributed by NM, 16-Dec-2003.) (Proof shortened by Mario Carneiro, 26-Apr-2015.)
Assertion
Ref Expression
mapen ((𝐴𝐵𝐶𝐷) → (𝐴𝑚 𝐶) ≈ (𝐵𝑚 𝐷))

Proof of Theorem mapen
Dummy variables 𝑓 𝑔 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bren 6725 . 2 (𝐴𝐵 ↔ ∃𝑓 𝑓:𝐴1-1-onto𝐵)
2 bren 6725 . 2 (𝐶𝐷 ↔ ∃𝑔 𝑔:𝐶1-1-onto𝐷)
3 eeanv 1925 . . 3 (∃𝑓𝑔(𝑓:𝐴1-1-onto𝐵𝑔:𝐶1-1-onto𝐷) ↔ (∃𝑓 𝑓:𝐴1-1-onto𝐵 ∧ ∃𝑔 𝑔:𝐶1-1-onto𝐷))
4 fnmap 6633 . . . . . 6 𝑚 Fn (V × V)
5 f1odm 5446 . . . . . . . 8 (𝑓:𝐴1-1-onto𝐵 → dom 𝑓 = 𝐴)
65adantr 274 . . . . . . 7 ((𝑓:𝐴1-1-onto𝐵𝑔:𝐶1-1-onto𝐷) → dom 𝑓 = 𝐴)
7 vex 2733 . . . . . . . 8 𝑓 ∈ V
87dmex 4877 . . . . . . 7 dom 𝑓 ∈ V
96, 8eqeltrrdi 2262 . . . . . 6 ((𝑓:𝐴1-1-onto𝐵𝑔:𝐶1-1-onto𝐷) → 𝐴 ∈ V)
10 f1odm 5446 . . . . . . . 8 (𝑔:𝐶1-1-onto𝐷 → dom 𝑔 = 𝐶)
1110adantl 275 . . . . . . 7 ((𝑓:𝐴1-1-onto𝐵𝑔:𝐶1-1-onto𝐷) → dom 𝑔 = 𝐶)
12 vex 2733 . . . . . . . 8 𝑔 ∈ V
1312dmex 4877 . . . . . . 7 dom 𝑔 ∈ V
1411, 13eqeltrrdi 2262 . . . . . 6 ((𝑓:𝐴1-1-onto𝐵𝑔:𝐶1-1-onto𝐷) → 𝐶 ∈ V)
15 fnovex 5886 . . . . . 6 (( ↑𝑚 Fn (V × V) ∧ 𝐴 ∈ V ∧ 𝐶 ∈ V) → (𝐴𝑚 𝐶) ∈ V)
164, 9, 14, 15mp3an2i 1337 . . . . 5 ((𝑓:𝐴1-1-onto𝐵𝑔:𝐶1-1-onto𝐷) → (𝐴𝑚 𝐶) ∈ V)
17 f1ofo 5449 . . . . . . . . 9 (𝑓:𝐴1-1-onto𝐵𝑓:𝐴onto𝐵)
1817adantr 274 . . . . . . . 8 ((𝑓:𝐴1-1-onto𝐵𝑔:𝐶1-1-onto𝐷) → 𝑓:𝐴onto𝐵)
19 forn 5423 . . . . . . . 8 (𝑓:𝐴onto𝐵 → ran 𝑓 = 𝐵)
2018, 19syl 14 . . . . . . 7 ((𝑓:𝐴1-1-onto𝐵𝑔:𝐶1-1-onto𝐷) → ran 𝑓 = 𝐵)
217rnex 4878 . . . . . . 7 ran 𝑓 ∈ V
2220, 21eqeltrrdi 2262 . . . . . 6 ((𝑓:𝐴1-1-onto𝐵𝑔:𝐶1-1-onto𝐷) → 𝐵 ∈ V)
23 f1ofo 5449 . . . . . . . . 9 (𝑔:𝐶1-1-onto𝐷𝑔:𝐶onto𝐷)
2423adantl 275 . . . . . . . 8 ((𝑓:𝐴1-1-onto𝐵𝑔:𝐶1-1-onto𝐷) → 𝑔:𝐶onto𝐷)
25 forn 5423 . . . . . . . 8 (𝑔:𝐶onto𝐷 → ran 𝑔 = 𝐷)
2624, 25syl 14 . . . . . . 7 ((𝑓:𝐴1-1-onto𝐵𝑔:𝐶1-1-onto𝐷) → ran 𝑔 = 𝐷)
2712rnex 4878 . . . . . . 7 ran 𝑔 ∈ V
2826, 27eqeltrrdi 2262 . . . . . 6 ((𝑓:𝐴1-1-onto𝐵𝑔:𝐶1-1-onto𝐷) → 𝐷 ∈ V)
29 fnovex 5886 . . . . . 6 (( ↑𝑚 Fn (V × V) ∧ 𝐵 ∈ V ∧ 𝐷 ∈ V) → (𝐵𝑚 𝐷) ∈ V)
304, 22, 28, 29mp3an2i 1337 . . . . 5 ((𝑓:𝐴1-1-onto𝐵𝑔:𝐶1-1-onto𝐷) → (𝐵𝑚 𝐷) ∈ V)
31 elmapi 6648 . . . . . . 7 (𝑥 ∈ (𝐴𝑚 𝐶) → 𝑥:𝐶𝐴)
32 f1of 5442 . . . . . . . . . . 11 (𝑓:𝐴1-1-onto𝐵𝑓:𝐴𝐵)
3332adantr 274 . . . . . . . . . 10 ((𝑓:𝐴1-1-onto𝐵𝑔:𝐶1-1-onto𝐷) → 𝑓:𝐴𝐵)
34 fco 5363 . . . . . . . . . 10 ((𝑓:𝐴𝐵𝑥:𝐶𝐴) → (𝑓𝑥):𝐶𝐵)
3533, 34sylan 281 . . . . . . . . 9 (((𝑓:𝐴1-1-onto𝐵𝑔:𝐶1-1-onto𝐷) ∧ 𝑥:𝐶𝐴) → (𝑓𝑥):𝐶𝐵)
36 f1ocnv 5455 . . . . . . . . . . . 12 (𝑔:𝐶1-1-onto𝐷𝑔:𝐷1-1-onto𝐶)
3736adantl 275 . . . . . . . . . . 11 ((𝑓:𝐴1-1-onto𝐵𝑔:𝐶1-1-onto𝐷) → 𝑔:𝐷1-1-onto𝐶)
38 f1of 5442 . . . . . . . . . . 11 (𝑔:𝐷1-1-onto𝐶𝑔:𝐷𝐶)
3937, 38syl 14 . . . . . . . . . 10 ((𝑓:𝐴1-1-onto𝐵𝑔:𝐶1-1-onto𝐷) → 𝑔:𝐷𝐶)
4039adantr 274 . . . . . . . . 9 (((𝑓:𝐴1-1-onto𝐵𝑔:𝐶1-1-onto𝐷) ∧ 𝑥:𝐶𝐴) → 𝑔:𝐷𝐶)
41 fco 5363 . . . . . . . . 9 (((𝑓𝑥):𝐶𝐵𝑔:𝐷𝐶) → ((𝑓𝑥) ∘ 𝑔):𝐷𝐵)
4235, 40, 41syl2anc 409 . . . . . . . 8 (((𝑓:𝐴1-1-onto𝐵𝑔:𝐶1-1-onto𝐷) ∧ 𝑥:𝐶𝐴) → ((𝑓𝑥) ∘ 𝑔):𝐷𝐵)
4342ex 114 . . . . . . 7 ((𝑓:𝐴1-1-onto𝐵𝑔:𝐶1-1-onto𝐷) → (𝑥:𝐶𝐴 → ((𝑓𝑥) ∘ 𝑔):𝐷𝐵))
4431, 43syl5 32 . . . . . 6 ((𝑓:𝐴1-1-onto𝐵𝑔:𝐶1-1-onto𝐷) → (𝑥 ∈ (𝐴𝑚 𝐶) → ((𝑓𝑥) ∘ 𝑔):𝐷𝐵))
4522, 28elmapd 6640 . . . . . 6 ((𝑓:𝐴1-1-onto𝐵𝑔:𝐶1-1-onto𝐷) → (((𝑓𝑥) ∘ 𝑔) ∈ (𝐵𝑚 𝐷) ↔ ((𝑓𝑥) ∘ 𝑔):𝐷𝐵))
4644, 45sylibrd 168 . . . . 5 ((𝑓:𝐴1-1-onto𝐵𝑔:𝐶1-1-onto𝐷) → (𝑥 ∈ (𝐴𝑚 𝐶) → ((𝑓𝑥) ∘ 𝑔) ∈ (𝐵𝑚 𝐷)))
47 elmapi 6648 . . . . . . 7 (𝑦 ∈ (𝐵𝑚 𝐷) → 𝑦:𝐷𝐵)
48 f1ocnv 5455 . . . . . . . . . . 11 (𝑓:𝐴1-1-onto𝐵𝑓:𝐵1-1-onto𝐴)
4948adantr 274 . . . . . . . . . 10 ((𝑓:𝐴1-1-onto𝐵𝑔:𝐶1-1-onto𝐷) → 𝑓:𝐵1-1-onto𝐴)
50 f1of 5442 . . . . . . . . . 10 (𝑓:𝐵1-1-onto𝐴𝑓:𝐵𝐴)
5149, 50syl 14 . . . . . . . . 9 ((𝑓:𝐴1-1-onto𝐵𝑔:𝐶1-1-onto𝐷) → 𝑓:𝐵𝐴)
52 id 19 . . . . . . . . . 10 (𝑦:𝐷𝐵𝑦:𝐷𝐵)
53 f1of 5442 . . . . . . . . . . 11 (𝑔:𝐶1-1-onto𝐷𝑔:𝐶𝐷)
5453adantl 275 . . . . . . . . . 10 ((𝑓:𝐴1-1-onto𝐵𝑔:𝐶1-1-onto𝐷) → 𝑔:𝐶𝐷)
55 fco 5363 . . . . . . . . . 10 ((𝑦:𝐷𝐵𝑔:𝐶𝐷) → (𝑦𝑔):𝐶𝐵)
5652, 54, 55syl2anr 288 . . . . . . . . 9 (((𝑓:𝐴1-1-onto𝐵𝑔:𝐶1-1-onto𝐷) ∧ 𝑦:𝐷𝐵) → (𝑦𝑔):𝐶𝐵)
57 fco 5363 . . . . . . . . 9 ((𝑓:𝐵𝐴 ∧ (𝑦𝑔):𝐶𝐵) → (𝑓 ∘ (𝑦𝑔)):𝐶𝐴)
5851, 56, 57syl2an2r 590 . . . . . . . 8 (((𝑓:𝐴1-1-onto𝐵𝑔:𝐶1-1-onto𝐷) ∧ 𝑦:𝐷𝐵) → (𝑓 ∘ (𝑦𝑔)):𝐶𝐴)
5958ex 114 . . . . . . 7 ((𝑓:𝐴1-1-onto𝐵𝑔:𝐶1-1-onto𝐷) → (𝑦:𝐷𝐵 → (𝑓 ∘ (𝑦𝑔)):𝐶𝐴))
6047, 59syl5 32 . . . . . 6 ((𝑓:𝐴1-1-onto𝐵𝑔:𝐶1-1-onto𝐷) → (𝑦 ∈ (𝐵𝑚 𝐷) → (𝑓 ∘ (𝑦𝑔)):𝐶𝐴))
619, 14elmapd 6640 . . . . . 6 ((𝑓:𝐴1-1-onto𝐵𝑔:𝐶1-1-onto𝐷) → ((𝑓 ∘ (𝑦𝑔)) ∈ (𝐴𝑚 𝐶) ↔ (𝑓 ∘ (𝑦𝑔)):𝐶𝐴))
6260, 61sylibrd 168 . . . . 5 ((𝑓:𝐴1-1-onto𝐵𝑔:𝐶1-1-onto𝐷) → (𝑦 ∈ (𝐵𝑚 𝐷) → (𝑓 ∘ (𝑦𝑔)) ∈ (𝐴𝑚 𝐶)))
63 coass 5129 . . . . . . . . . . 11 ((𝑓𝑓) ∘ (𝑦𝑔)) = (𝑓 ∘ (𝑓 ∘ (𝑦𝑔)))
64 f1ococnv2 5469 . . . . . . . . . . . . . 14 (𝑓:𝐴1-1-onto𝐵 → (𝑓𝑓) = ( I ↾ 𝐵))
6564ad2antrr 485 . . . . . . . . . . . . 13 (((𝑓:𝐴1-1-onto𝐵𝑔:𝐶1-1-onto𝐷) ∧ (𝑥:𝐶𝐴𝑦:𝐷𝐵)) → (𝑓𝑓) = ( I ↾ 𝐵))
6665coeq1d 4772 . . . . . . . . . . . 12 (((𝑓:𝐴1-1-onto𝐵𝑔:𝐶1-1-onto𝐷) ∧ (𝑥:𝐶𝐴𝑦:𝐷𝐵)) → ((𝑓𝑓) ∘ (𝑦𝑔)) = (( I ↾ 𝐵) ∘ (𝑦𝑔)))
6756adantrl 475 . . . . . . . . . . . . 13 (((𝑓:𝐴1-1-onto𝐵𝑔:𝐶1-1-onto𝐷) ∧ (𝑥:𝐶𝐴𝑦:𝐷𝐵)) → (𝑦𝑔):𝐶𝐵)
68 fcoi2 5379 . . . . . . . . . . . . 13 ((𝑦𝑔):𝐶𝐵 → (( I ↾ 𝐵) ∘ (𝑦𝑔)) = (𝑦𝑔))
6967, 68syl 14 . . . . . . . . . . . 12 (((𝑓:𝐴1-1-onto𝐵𝑔:𝐶1-1-onto𝐷) ∧ (𝑥:𝐶𝐴𝑦:𝐷𝐵)) → (( I ↾ 𝐵) ∘ (𝑦𝑔)) = (𝑦𝑔))
7066, 69eqtrd 2203 . . . . . . . . . . 11 (((𝑓:𝐴1-1-onto𝐵𝑔:𝐶1-1-onto𝐷) ∧ (𝑥:𝐶𝐴𝑦:𝐷𝐵)) → ((𝑓𝑓) ∘ (𝑦𝑔)) = (𝑦𝑔))
7163, 70eqtr3id 2217 . . . . . . . . . 10 (((𝑓:𝐴1-1-onto𝐵𝑔:𝐶1-1-onto𝐷) ∧ (𝑥:𝐶𝐴𝑦:𝐷𝐵)) → (𝑓 ∘ (𝑓 ∘ (𝑦𝑔))) = (𝑦𝑔))
7271eqeq2d 2182 . . . . . . . . 9 (((𝑓:𝐴1-1-onto𝐵𝑔:𝐶1-1-onto𝐷) ∧ (𝑥:𝐶𝐴𝑦:𝐷𝐵)) → ((𝑓𝑥) = (𝑓 ∘ (𝑓 ∘ (𝑦𝑔))) ↔ (𝑓𝑥) = (𝑦𝑔)))
73 coass 5129 . . . . . . . . . . . 12 (((𝑓𝑥) ∘ 𝑔) ∘ 𝑔) = ((𝑓𝑥) ∘ (𝑔𝑔))
74 f1ococnv1 5471 . . . . . . . . . . . . . . 15 (𝑔:𝐶1-1-onto𝐷 → (𝑔𝑔) = ( I ↾ 𝐶))
7574ad2antlr 486 . . . . . . . . . . . . . 14 (((𝑓:𝐴1-1-onto𝐵𝑔:𝐶1-1-onto𝐷) ∧ (𝑥:𝐶𝐴𝑦:𝐷𝐵)) → (𝑔𝑔) = ( I ↾ 𝐶))
7675coeq2d 4773 . . . . . . . . . . . . 13 (((𝑓:𝐴1-1-onto𝐵𝑔:𝐶1-1-onto𝐷) ∧ (𝑥:𝐶𝐴𝑦:𝐷𝐵)) → ((𝑓𝑥) ∘ (𝑔𝑔)) = ((𝑓𝑥) ∘ ( I ↾ 𝐶)))
7735adantrr 476 . . . . . . . . . . . . . 14 (((𝑓:𝐴1-1-onto𝐵𝑔:𝐶1-1-onto𝐷) ∧ (𝑥:𝐶𝐴𝑦:𝐷𝐵)) → (𝑓𝑥):𝐶𝐵)
78 fcoi1 5378 . . . . . . . . . . . . . 14 ((𝑓𝑥):𝐶𝐵 → ((𝑓𝑥) ∘ ( I ↾ 𝐶)) = (𝑓𝑥))
7977, 78syl 14 . . . . . . . . . . . . 13 (((𝑓:𝐴1-1-onto𝐵𝑔:𝐶1-1-onto𝐷) ∧ (𝑥:𝐶𝐴𝑦:𝐷𝐵)) → ((𝑓𝑥) ∘ ( I ↾ 𝐶)) = (𝑓𝑥))
8076, 79eqtrd 2203 . . . . . . . . . . . 12 (((𝑓:𝐴1-1-onto𝐵𝑔:𝐶1-1-onto𝐷) ∧ (𝑥:𝐶𝐴𝑦:𝐷𝐵)) → ((𝑓𝑥) ∘ (𝑔𝑔)) = (𝑓𝑥))
8173, 80eqtrid 2215 . . . . . . . . . . 11 (((𝑓:𝐴1-1-onto𝐵𝑔:𝐶1-1-onto𝐷) ∧ (𝑥:𝐶𝐴𝑦:𝐷𝐵)) → (((𝑓𝑥) ∘ 𝑔) ∘ 𝑔) = (𝑓𝑥))
8281eqeq2d 2182 . . . . . . . . . 10 (((𝑓:𝐴1-1-onto𝐵𝑔:𝐶1-1-onto𝐷) ∧ (𝑥:𝐶𝐴𝑦:𝐷𝐵)) → ((𝑦𝑔) = (((𝑓𝑥) ∘ 𝑔) ∘ 𝑔) ↔ (𝑦𝑔) = (𝑓𝑥)))
83 eqcom 2172 . . . . . . . . . 10 ((𝑦𝑔) = (𝑓𝑥) ↔ (𝑓𝑥) = (𝑦𝑔))
8482, 83bitrdi 195 . . . . . . . . 9 (((𝑓:𝐴1-1-onto𝐵𝑔:𝐶1-1-onto𝐷) ∧ (𝑥:𝐶𝐴𝑦:𝐷𝐵)) → ((𝑦𝑔) = (((𝑓𝑥) ∘ 𝑔) ∘ 𝑔) ↔ (𝑓𝑥) = (𝑦𝑔)))
8572, 84bitr4d 190 . . . . . . . 8 (((𝑓:𝐴1-1-onto𝐵𝑔:𝐶1-1-onto𝐷) ∧ (𝑥:𝐶𝐴𝑦:𝐷𝐵)) → ((𝑓𝑥) = (𝑓 ∘ (𝑓 ∘ (𝑦𝑔))) ↔ (𝑦𝑔) = (((𝑓𝑥) ∘ 𝑔) ∘ 𝑔)))
86 f1of1 5441 . . . . . . . . . 10 (𝑓:𝐴1-1-onto𝐵𝑓:𝐴1-1𝐵)
8786ad2antrr 485 . . . . . . . . 9 (((𝑓:𝐴1-1-onto𝐵𝑔:𝐶1-1-onto𝐷) ∧ (𝑥:𝐶𝐴𝑦:𝐷𝐵)) → 𝑓:𝐴1-1𝐵)
88 simprl 526 . . . . . . . . 9 (((𝑓:𝐴1-1-onto𝐵𝑔:𝐶1-1-onto𝐷) ∧ (𝑥:𝐶𝐴𝑦:𝐷𝐵)) → 𝑥:𝐶𝐴)
8958adantrl 475 . . . . . . . . 9 (((𝑓:𝐴1-1-onto𝐵𝑔:𝐶1-1-onto𝐷) ∧ (𝑥:𝐶𝐴𝑦:𝐷𝐵)) → (𝑓 ∘ (𝑦𝑔)):𝐶𝐴)
90 cocan1 5766 . . . . . . . . 9 ((𝑓:𝐴1-1𝐵𝑥:𝐶𝐴 ∧ (𝑓 ∘ (𝑦𝑔)):𝐶𝐴) → ((𝑓𝑥) = (𝑓 ∘ (𝑓 ∘ (𝑦𝑔))) ↔ 𝑥 = (𝑓 ∘ (𝑦𝑔))))
9187, 88, 89, 90syl3anc 1233 . . . . . . . 8 (((𝑓:𝐴1-1-onto𝐵𝑔:𝐶1-1-onto𝐷) ∧ (𝑥:𝐶𝐴𝑦:𝐷𝐵)) → ((𝑓𝑥) = (𝑓 ∘ (𝑓 ∘ (𝑦𝑔))) ↔ 𝑥 = (𝑓 ∘ (𝑦𝑔))))
9224adantr 274 . . . . . . . . 9 (((𝑓:𝐴1-1-onto𝐵𝑔:𝐶1-1-onto𝐷) ∧ (𝑥:𝐶𝐴𝑦:𝐷𝐵)) → 𝑔:𝐶onto𝐷)
93 ffn 5347 . . . . . . . . . 10 (𝑦:𝐷𝐵𝑦 Fn 𝐷)
9493ad2antll 488 . . . . . . . . 9 (((𝑓:𝐴1-1-onto𝐵𝑔:𝐶1-1-onto𝐷) ∧ (𝑥:𝐶𝐴𝑦:𝐷𝐵)) → 𝑦 Fn 𝐷)
9542adantrr 476 . . . . . . . . . 10 (((𝑓:𝐴1-1-onto𝐵𝑔:𝐶1-1-onto𝐷) ∧ (𝑥:𝐶𝐴𝑦:𝐷𝐵)) → ((𝑓𝑥) ∘ 𝑔):𝐷𝐵)
96 ffn 5347 . . . . . . . . . 10 (((𝑓𝑥) ∘ 𝑔):𝐷𝐵 → ((𝑓𝑥) ∘ 𝑔) Fn 𝐷)
9795, 96syl 14 . . . . . . . . 9 (((𝑓:𝐴1-1-onto𝐵𝑔:𝐶1-1-onto𝐷) ∧ (𝑥:𝐶𝐴𝑦:𝐷𝐵)) → ((𝑓𝑥) ∘ 𝑔) Fn 𝐷)
98 cocan2 5767 . . . . . . . . 9 ((𝑔:𝐶onto𝐷𝑦 Fn 𝐷 ∧ ((𝑓𝑥) ∘ 𝑔) Fn 𝐷) → ((𝑦𝑔) = (((𝑓𝑥) ∘ 𝑔) ∘ 𝑔) ↔ 𝑦 = ((𝑓𝑥) ∘ 𝑔)))
9992, 94, 97, 98syl3anc 1233 . . . . . . . 8 (((𝑓:𝐴1-1-onto𝐵𝑔:𝐶1-1-onto𝐷) ∧ (𝑥:𝐶𝐴𝑦:𝐷𝐵)) → ((𝑦𝑔) = (((𝑓𝑥) ∘ 𝑔) ∘ 𝑔) ↔ 𝑦 = ((𝑓𝑥) ∘ 𝑔)))
10085, 91, 993bitr3d 217 . . . . . . 7 (((𝑓:𝐴1-1-onto𝐵𝑔:𝐶1-1-onto𝐷) ∧ (𝑥:𝐶𝐴𝑦:𝐷𝐵)) → (𝑥 = (𝑓 ∘ (𝑦𝑔)) ↔ 𝑦 = ((𝑓𝑥) ∘ 𝑔)))
101100ex 114 . . . . . 6 ((𝑓:𝐴1-1-onto𝐵𝑔:𝐶1-1-onto𝐷) → ((𝑥:𝐶𝐴𝑦:𝐷𝐵) → (𝑥 = (𝑓 ∘ (𝑦𝑔)) ↔ 𝑦 = ((𝑓𝑥) ∘ 𝑔))))
10231, 47, 101syl2ani 406 . . . . 5 ((𝑓:𝐴1-1-onto𝐵𝑔:𝐶1-1-onto𝐷) → ((𝑥 ∈ (𝐴𝑚 𝐶) ∧ 𝑦 ∈ (𝐵𝑚 𝐷)) → (𝑥 = (𝑓 ∘ (𝑦𝑔)) ↔ 𝑦 = ((𝑓𝑥) ∘ 𝑔))))
10316, 30, 46, 62, 102en3d 6747 . . . 4 ((𝑓:𝐴1-1-onto𝐵𝑔:𝐶1-1-onto𝐷) → (𝐴𝑚 𝐶) ≈ (𝐵𝑚 𝐷))
104103exlimivv 1889 . . 3 (∃𝑓𝑔(𝑓:𝐴1-1-onto𝐵𝑔:𝐶1-1-onto𝐷) → (𝐴𝑚 𝐶) ≈ (𝐵𝑚 𝐷))
1053, 104sylbir 134 . 2 ((∃𝑓 𝑓:𝐴1-1-onto𝐵 ∧ ∃𝑔 𝑔:𝐶1-1-onto𝐷) → (𝐴𝑚 𝐶) ≈ (𝐵𝑚 𝐷))
1061, 2, 105syl2anb 289 1 ((𝐴𝐵𝐶𝐷) → (𝐴𝑚 𝐶) ≈ (𝐵𝑚 𝐷))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1348  wex 1485  wcel 2141  Vcvv 2730   class class class wbr 3989   I cid 4273   × cxp 4609  ccnv 4610  dom cdm 4611  ran crn 4612  cres 4613  ccom 4615   Fn wfn 5193  wf 5194  1-1wf1 5195  ontowfo 5196  1-1-ontowf1o 5197  (class class class)co 5853  𝑚 cmap 6626  cen 6716
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-map 6628  df-en 6719
This theorem is referenced by:  mapdom1g  6825
  Copyright terms: Public domain W3C validator