Step | Hyp | Ref
| Expression |
1 | | bren 6713 |
. 2
⊢ (𝐴 ≈ 𝐵 ↔ ∃𝑓 𝑓:𝐴–1-1-onto→𝐵) |
2 | | bren 6713 |
. 2
⊢ (𝐶 ≈ 𝐷 ↔ ∃𝑔 𝑔:𝐶–1-1-onto→𝐷) |
3 | | eeanv 1920 |
. . 3
⊢
(∃𝑓∃𝑔(𝑓:𝐴–1-1-onto→𝐵 ∧ 𝑔:𝐶–1-1-onto→𝐷) ↔ (∃𝑓 𝑓:𝐴–1-1-onto→𝐵 ∧ ∃𝑔 𝑔:𝐶–1-1-onto→𝐷)) |
4 | | fnmap 6621 |
. . . . . 6
⊢
↑𝑚 Fn (V × V) |
5 | | f1odm 5436 |
. . . . . . . 8
⊢ (𝑓:𝐴–1-1-onto→𝐵 → dom 𝑓 = 𝐴) |
6 | 5 | adantr 274 |
. . . . . . 7
⊢ ((𝑓:𝐴–1-1-onto→𝐵 ∧ 𝑔:𝐶–1-1-onto→𝐷) → dom 𝑓 = 𝐴) |
7 | | vex 2729 |
. . . . . . . 8
⊢ 𝑓 ∈ V |
8 | 7 | dmex 4870 |
. . . . . . 7
⊢ dom 𝑓 ∈ V |
9 | 6, 8 | eqeltrrdi 2258 |
. . . . . 6
⊢ ((𝑓:𝐴–1-1-onto→𝐵 ∧ 𝑔:𝐶–1-1-onto→𝐷) → 𝐴 ∈ V) |
10 | | f1odm 5436 |
. . . . . . . 8
⊢ (𝑔:𝐶–1-1-onto→𝐷 → dom 𝑔 = 𝐶) |
11 | 10 | adantl 275 |
. . . . . . 7
⊢ ((𝑓:𝐴–1-1-onto→𝐵 ∧ 𝑔:𝐶–1-1-onto→𝐷) → dom 𝑔 = 𝐶) |
12 | | vex 2729 |
. . . . . . . 8
⊢ 𝑔 ∈ V |
13 | 12 | dmex 4870 |
. . . . . . 7
⊢ dom 𝑔 ∈ V |
14 | 11, 13 | eqeltrrdi 2258 |
. . . . . 6
⊢ ((𝑓:𝐴–1-1-onto→𝐵 ∧ 𝑔:𝐶–1-1-onto→𝐷) → 𝐶 ∈ V) |
15 | | fnovex 5875 |
. . . . . 6
⊢ ((
↑𝑚 Fn (V × V) ∧ 𝐴 ∈ V ∧ 𝐶 ∈ V) → (𝐴 ↑𝑚 𝐶) ∈ V) |
16 | 4, 9, 14, 15 | mp3an2i 1332 |
. . . . 5
⊢ ((𝑓:𝐴–1-1-onto→𝐵 ∧ 𝑔:𝐶–1-1-onto→𝐷) → (𝐴 ↑𝑚 𝐶) ∈ V) |
17 | | f1ofo 5439 |
. . . . . . . . 9
⊢ (𝑓:𝐴–1-1-onto→𝐵 → 𝑓:𝐴–onto→𝐵) |
18 | 17 | adantr 274 |
. . . . . . . 8
⊢ ((𝑓:𝐴–1-1-onto→𝐵 ∧ 𝑔:𝐶–1-1-onto→𝐷) → 𝑓:𝐴–onto→𝐵) |
19 | | forn 5413 |
. . . . . . . 8
⊢ (𝑓:𝐴–onto→𝐵 → ran 𝑓 = 𝐵) |
20 | 18, 19 | syl 14 |
. . . . . . 7
⊢ ((𝑓:𝐴–1-1-onto→𝐵 ∧ 𝑔:𝐶–1-1-onto→𝐷) → ran 𝑓 = 𝐵) |
21 | 7 | rnex 4871 |
. . . . . . 7
⊢ ran 𝑓 ∈ V |
22 | 20, 21 | eqeltrrdi 2258 |
. . . . . 6
⊢ ((𝑓:𝐴–1-1-onto→𝐵 ∧ 𝑔:𝐶–1-1-onto→𝐷) → 𝐵 ∈ V) |
23 | | f1ofo 5439 |
. . . . . . . . 9
⊢ (𝑔:𝐶–1-1-onto→𝐷 → 𝑔:𝐶–onto→𝐷) |
24 | 23 | adantl 275 |
. . . . . . . 8
⊢ ((𝑓:𝐴–1-1-onto→𝐵 ∧ 𝑔:𝐶–1-1-onto→𝐷) → 𝑔:𝐶–onto→𝐷) |
25 | | forn 5413 |
. . . . . . . 8
⊢ (𝑔:𝐶–onto→𝐷 → ran 𝑔 = 𝐷) |
26 | 24, 25 | syl 14 |
. . . . . . 7
⊢ ((𝑓:𝐴–1-1-onto→𝐵 ∧ 𝑔:𝐶–1-1-onto→𝐷) → ran 𝑔 = 𝐷) |
27 | 12 | rnex 4871 |
. . . . . . 7
⊢ ran 𝑔 ∈ V |
28 | 26, 27 | eqeltrrdi 2258 |
. . . . . 6
⊢ ((𝑓:𝐴–1-1-onto→𝐵 ∧ 𝑔:𝐶–1-1-onto→𝐷) → 𝐷 ∈ V) |
29 | | fnovex 5875 |
. . . . . 6
⊢ ((
↑𝑚 Fn (V × V) ∧ 𝐵 ∈ V ∧ 𝐷 ∈ V) → (𝐵 ↑𝑚 𝐷) ∈ V) |
30 | 4, 22, 28, 29 | mp3an2i 1332 |
. . . . 5
⊢ ((𝑓:𝐴–1-1-onto→𝐵 ∧ 𝑔:𝐶–1-1-onto→𝐷) → (𝐵 ↑𝑚 𝐷) ∈ V) |
31 | | elmapi 6636 |
. . . . . . 7
⊢ (𝑥 ∈ (𝐴 ↑𝑚 𝐶) → 𝑥:𝐶⟶𝐴) |
32 | | f1of 5432 |
. . . . . . . . . . 11
⊢ (𝑓:𝐴–1-1-onto→𝐵 → 𝑓:𝐴⟶𝐵) |
33 | 32 | adantr 274 |
. . . . . . . . . 10
⊢ ((𝑓:𝐴–1-1-onto→𝐵 ∧ 𝑔:𝐶–1-1-onto→𝐷) → 𝑓:𝐴⟶𝐵) |
34 | | fco 5353 |
. . . . . . . . . 10
⊢ ((𝑓:𝐴⟶𝐵 ∧ 𝑥:𝐶⟶𝐴) → (𝑓 ∘ 𝑥):𝐶⟶𝐵) |
35 | 33, 34 | sylan 281 |
. . . . . . . . 9
⊢ (((𝑓:𝐴–1-1-onto→𝐵 ∧ 𝑔:𝐶–1-1-onto→𝐷) ∧ 𝑥:𝐶⟶𝐴) → (𝑓 ∘ 𝑥):𝐶⟶𝐵) |
36 | | f1ocnv 5445 |
. . . . . . . . . . . 12
⊢ (𝑔:𝐶–1-1-onto→𝐷 → ◡𝑔:𝐷–1-1-onto→𝐶) |
37 | 36 | adantl 275 |
. . . . . . . . . . 11
⊢ ((𝑓:𝐴–1-1-onto→𝐵 ∧ 𝑔:𝐶–1-1-onto→𝐷) → ◡𝑔:𝐷–1-1-onto→𝐶) |
38 | | f1of 5432 |
. . . . . . . . . . 11
⊢ (◡𝑔:𝐷–1-1-onto→𝐶 → ◡𝑔:𝐷⟶𝐶) |
39 | 37, 38 | syl 14 |
. . . . . . . . . 10
⊢ ((𝑓:𝐴–1-1-onto→𝐵 ∧ 𝑔:𝐶–1-1-onto→𝐷) → ◡𝑔:𝐷⟶𝐶) |
40 | 39 | adantr 274 |
. . . . . . . . 9
⊢ (((𝑓:𝐴–1-1-onto→𝐵 ∧ 𝑔:𝐶–1-1-onto→𝐷) ∧ 𝑥:𝐶⟶𝐴) → ◡𝑔:𝐷⟶𝐶) |
41 | | fco 5353 |
. . . . . . . . 9
⊢ (((𝑓 ∘ 𝑥):𝐶⟶𝐵 ∧ ◡𝑔:𝐷⟶𝐶) → ((𝑓 ∘ 𝑥) ∘ ◡𝑔):𝐷⟶𝐵) |
42 | 35, 40, 41 | syl2anc 409 |
. . . . . . . 8
⊢ (((𝑓:𝐴–1-1-onto→𝐵 ∧ 𝑔:𝐶–1-1-onto→𝐷) ∧ 𝑥:𝐶⟶𝐴) → ((𝑓 ∘ 𝑥) ∘ ◡𝑔):𝐷⟶𝐵) |
43 | 42 | ex 114 |
. . . . . . 7
⊢ ((𝑓:𝐴–1-1-onto→𝐵 ∧ 𝑔:𝐶–1-1-onto→𝐷) → (𝑥:𝐶⟶𝐴 → ((𝑓 ∘ 𝑥) ∘ ◡𝑔):𝐷⟶𝐵)) |
44 | 31, 43 | syl5 32 |
. . . . . 6
⊢ ((𝑓:𝐴–1-1-onto→𝐵 ∧ 𝑔:𝐶–1-1-onto→𝐷) → (𝑥 ∈ (𝐴 ↑𝑚 𝐶) → ((𝑓 ∘ 𝑥) ∘ ◡𝑔):𝐷⟶𝐵)) |
45 | 22, 28 | elmapd 6628 |
. . . . . 6
⊢ ((𝑓:𝐴–1-1-onto→𝐵 ∧ 𝑔:𝐶–1-1-onto→𝐷) → (((𝑓 ∘ 𝑥) ∘ ◡𝑔) ∈ (𝐵 ↑𝑚 𝐷) ↔ ((𝑓 ∘ 𝑥) ∘ ◡𝑔):𝐷⟶𝐵)) |
46 | 44, 45 | sylibrd 168 |
. . . . 5
⊢ ((𝑓:𝐴–1-1-onto→𝐵 ∧ 𝑔:𝐶–1-1-onto→𝐷) → (𝑥 ∈ (𝐴 ↑𝑚 𝐶) → ((𝑓 ∘ 𝑥) ∘ ◡𝑔) ∈ (𝐵 ↑𝑚 𝐷))) |
47 | | elmapi 6636 |
. . . . . . 7
⊢ (𝑦 ∈ (𝐵 ↑𝑚 𝐷) → 𝑦:𝐷⟶𝐵) |
48 | | f1ocnv 5445 |
. . . . . . . . . . 11
⊢ (𝑓:𝐴–1-1-onto→𝐵 → ◡𝑓:𝐵–1-1-onto→𝐴) |
49 | 48 | adantr 274 |
. . . . . . . . . 10
⊢ ((𝑓:𝐴–1-1-onto→𝐵 ∧ 𝑔:𝐶–1-1-onto→𝐷) → ◡𝑓:𝐵–1-1-onto→𝐴) |
50 | | f1of 5432 |
. . . . . . . . . 10
⊢ (◡𝑓:𝐵–1-1-onto→𝐴 → ◡𝑓:𝐵⟶𝐴) |
51 | 49, 50 | syl 14 |
. . . . . . . . 9
⊢ ((𝑓:𝐴–1-1-onto→𝐵 ∧ 𝑔:𝐶–1-1-onto→𝐷) → ◡𝑓:𝐵⟶𝐴) |
52 | | id 19 |
. . . . . . . . . 10
⊢ (𝑦:𝐷⟶𝐵 → 𝑦:𝐷⟶𝐵) |
53 | | f1of 5432 |
. . . . . . . . . . 11
⊢ (𝑔:𝐶–1-1-onto→𝐷 → 𝑔:𝐶⟶𝐷) |
54 | 53 | adantl 275 |
. . . . . . . . . 10
⊢ ((𝑓:𝐴–1-1-onto→𝐵 ∧ 𝑔:𝐶–1-1-onto→𝐷) → 𝑔:𝐶⟶𝐷) |
55 | | fco 5353 |
. . . . . . . . . 10
⊢ ((𝑦:𝐷⟶𝐵 ∧ 𝑔:𝐶⟶𝐷) → (𝑦 ∘ 𝑔):𝐶⟶𝐵) |
56 | 52, 54, 55 | syl2anr 288 |
. . . . . . . . 9
⊢ (((𝑓:𝐴–1-1-onto→𝐵 ∧ 𝑔:𝐶–1-1-onto→𝐷) ∧ 𝑦:𝐷⟶𝐵) → (𝑦 ∘ 𝑔):𝐶⟶𝐵) |
57 | | fco 5353 |
. . . . . . . . 9
⊢ ((◡𝑓:𝐵⟶𝐴 ∧ (𝑦 ∘ 𝑔):𝐶⟶𝐵) → (◡𝑓 ∘ (𝑦 ∘ 𝑔)):𝐶⟶𝐴) |
58 | 51, 56, 57 | syl2an2r 585 |
. . . . . . . 8
⊢ (((𝑓:𝐴–1-1-onto→𝐵 ∧ 𝑔:𝐶–1-1-onto→𝐷) ∧ 𝑦:𝐷⟶𝐵) → (◡𝑓 ∘ (𝑦 ∘ 𝑔)):𝐶⟶𝐴) |
59 | 58 | ex 114 |
. . . . . . 7
⊢ ((𝑓:𝐴–1-1-onto→𝐵 ∧ 𝑔:𝐶–1-1-onto→𝐷) → (𝑦:𝐷⟶𝐵 → (◡𝑓 ∘ (𝑦 ∘ 𝑔)):𝐶⟶𝐴)) |
60 | 47, 59 | syl5 32 |
. . . . . 6
⊢ ((𝑓:𝐴–1-1-onto→𝐵 ∧ 𝑔:𝐶–1-1-onto→𝐷) → (𝑦 ∈ (𝐵 ↑𝑚 𝐷) → (◡𝑓 ∘ (𝑦 ∘ 𝑔)):𝐶⟶𝐴)) |
61 | 9, 14 | elmapd 6628 |
. . . . . 6
⊢ ((𝑓:𝐴–1-1-onto→𝐵 ∧ 𝑔:𝐶–1-1-onto→𝐷) → ((◡𝑓 ∘ (𝑦 ∘ 𝑔)) ∈ (𝐴 ↑𝑚 𝐶) ↔ (◡𝑓 ∘ (𝑦 ∘ 𝑔)):𝐶⟶𝐴)) |
62 | 60, 61 | sylibrd 168 |
. . . . 5
⊢ ((𝑓:𝐴–1-1-onto→𝐵 ∧ 𝑔:𝐶–1-1-onto→𝐷) → (𝑦 ∈ (𝐵 ↑𝑚 𝐷) → (◡𝑓 ∘ (𝑦 ∘ 𝑔)) ∈ (𝐴 ↑𝑚 𝐶))) |
63 | | coass 5122 |
. . . . . . . . . . 11
⊢ ((𝑓 ∘ ◡𝑓) ∘ (𝑦 ∘ 𝑔)) = (𝑓 ∘ (◡𝑓 ∘ (𝑦 ∘ 𝑔))) |
64 | | f1ococnv2 5459 |
. . . . . . . . . . . . . 14
⊢ (𝑓:𝐴–1-1-onto→𝐵 → (𝑓 ∘ ◡𝑓) = ( I ↾ 𝐵)) |
65 | 64 | ad2antrr 480 |
. . . . . . . . . . . . 13
⊢ (((𝑓:𝐴–1-1-onto→𝐵 ∧ 𝑔:𝐶–1-1-onto→𝐷) ∧ (𝑥:𝐶⟶𝐴 ∧ 𝑦:𝐷⟶𝐵)) → (𝑓 ∘ ◡𝑓) = ( I ↾ 𝐵)) |
66 | 65 | coeq1d 4765 |
. . . . . . . . . . . 12
⊢ (((𝑓:𝐴–1-1-onto→𝐵 ∧ 𝑔:𝐶–1-1-onto→𝐷) ∧ (𝑥:𝐶⟶𝐴 ∧ 𝑦:𝐷⟶𝐵)) → ((𝑓 ∘ ◡𝑓) ∘ (𝑦 ∘ 𝑔)) = (( I ↾ 𝐵) ∘ (𝑦 ∘ 𝑔))) |
67 | 56 | adantrl 470 |
. . . . . . . . . . . . 13
⊢ (((𝑓:𝐴–1-1-onto→𝐵 ∧ 𝑔:𝐶–1-1-onto→𝐷) ∧ (𝑥:𝐶⟶𝐴 ∧ 𝑦:𝐷⟶𝐵)) → (𝑦 ∘ 𝑔):𝐶⟶𝐵) |
68 | | fcoi2 5369 |
. . . . . . . . . . . . 13
⊢ ((𝑦 ∘ 𝑔):𝐶⟶𝐵 → (( I ↾ 𝐵) ∘ (𝑦 ∘ 𝑔)) = (𝑦 ∘ 𝑔)) |
69 | 67, 68 | syl 14 |
. . . . . . . . . . . 12
⊢ (((𝑓:𝐴–1-1-onto→𝐵 ∧ 𝑔:𝐶–1-1-onto→𝐷) ∧ (𝑥:𝐶⟶𝐴 ∧ 𝑦:𝐷⟶𝐵)) → (( I ↾ 𝐵) ∘ (𝑦 ∘ 𝑔)) = (𝑦 ∘ 𝑔)) |
70 | 66, 69 | eqtrd 2198 |
. . . . . . . . . . 11
⊢ (((𝑓:𝐴–1-1-onto→𝐵 ∧ 𝑔:𝐶–1-1-onto→𝐷) ∧ (𝑥:𝐶⟶𝐴 ∧ 𝑦:𝐷⟶𝐵)) → ((𝑓 ∘ ◡𝑓) ∘ (𝑦 ∘ 𝑔)) = (𝑦 ∘ 𝑔)) |
71 | 63, 70 | eqtr3id 2213 |
. . . . . . . . . 10
⊢ (((𝑓:𝐴–1-1-onto→𝐵 ∧ 𝑔:𝐶–1-1-onto→𝐷) ∧ (𝑥:𝐶⟶𝐴 ∧ 𝑦:𝐷⟶𝐵)) → (𝑓 ∘ (◡𝑓 ∘ (𝑦 ∘ 𝑔))) = (𝑦 ∘ 𝑔)) |
72 | 71 | eqeq2d 2177 |
. . . . . . . . 9
⊢ (((𝑓:𝐴–1-1-onto→𝐵 ∧ 𝑔:𝐶–1-1-onto→𝐷) ∧ (𝑥:𝐶⟶𝐴 ∧ 𝑦:𝐷⟶𝐵)) → ((𝑓 ∘ 𝑥) = (𝑓 ∘ (◡𝑓 ∘ (𝑦 ∘ 𝑔))) ↔ (𝑓 ∘ 𝑥) = (𝑦 ∘ 𝑔))) |
73 | | coass 5122 |
. . . . . . . . . . . 12
⊢ (((𝑓 ∘ 𝑥) ∘ ◡𝑔) ∘ 𝑔) = ((𝑓 ∘ 𝑥) ∘ (◡𝑔 ∘ 𝑔)) |
74 | | f1ococnv1 5461 |
. . . . . . . . . . . . . . 15
⊢ (𝑔:𝐶–1-1-onto→𝐷 → (◡𝑔 ∘ 𝑔) = ( I ↾ 𝐶)) |
75 | 74 | ad2antlr 481 |
. . . . . . . . . . . . . 14
⊢ (((𝑓:𝐴–1-1-onto→𝐵 ∧ 𝑔:𝐶–1-1-onto→𝐷) ∧ (𝑥:𝐶⟶𝐴 ∧ 𝑦:𝐷⟶𝐵)) → (◡𝑔 ∘ 𝑔) = ( I ↾ 𝐶)) |
76 | 75 | coeq2d 4766 |
. . . . . . . . . . . . 13
⊢ (((𝑓:𝐴–1-1-onto→𝐵 ∧ 𝑔:𝐶–1-1-onto→𝐷) ∧ (𝑥:𝐶⟶𝐴 ∧ 𝑦:𝐷⟶𝐵)) → ((𝑓 ∘ 𝑥) ∘ (◡𝑔 ∘ 𝑔)) = ((𝑓 ∘ 𝑥) ∘ ( I ↾ 𝐶))) |
77 | 35 | adantrr 471 |
. . . . . . . . . . . . . 14
⊢ (((𝑓:𝐴–1-1-onto→𝐵 ∧ 𝑔:𝐶–1-1-onto→𝐷) ∧ (𝑥:𝐶⟶𝐴 ∧ 𝑦:𝐷⟶𝐵)) → (𝑓 ∘ 𝑥):𝐶⟶𝐵) |
78 | | fcoi1 5368 |
. . . . . . . . . . . . . 14
⊢ ((𝑓 ∘ 𝑥):𝐶⟶𝐵 → ((𝑓 ∘ 𝑥) ∘ ( I ↾ 𝐶)) = (𝑓 ∘ 𝑥)) |
79 | 77, 78 | syl 14 |
. . . . . . . . . . . . 13
⊢ (((𝑓:𝐴–1-1-onto→𝐵 ∧ 𝑔:𝐶–1-1-onto→𝐷) ∧ (𝑥:𝐶⟶𝐴 ∧ 𝑦:𝐷⟶𝐵)) → ((𝑓 ∘ 𝑥) ∘ ( I ↾ 𝐶)) = (𝑓 ∘ 𝑥)) |
80 | 76, 79 | eqtrd 2198 |
. . . . . . . . . . . 12
⊢ (((𝑓:𝐴–1-1-onto→𝐵 ∧ 𝑔:𝐶–1-1-onto→𝐷) ∧ (𝑥:𝐶⟶𝐴 ∧ 𝑦:𝐷⟶𝐵)) → ((𝑓 ∘ 𝑥) ∘ (◡𝑔 ∘ 𝑔)) = (𝑓 ∘ 𝑥)) |
81 | 73, 80 | syl5eq 2211 |
. . . . . . . . . . 11
⊢ (((𝑓:𝐴–1-1-onto→𝐵 ∧ 𝑔:𝐶–1-1-onto→𝐷) ∧ (𝑥:𝐶⟶𝐴 ∧ 𝑦:𝐷⟶𝐵)) → (((𝑓 ∘ 𝑥) ∘ ◡𝑔) ∘ 𝑔) = (𝑓 ∘ 𝑥)) |
82 | 81 | eqeq2d 2177 |
. . . . . . . . . 10
⊢ (((𝑓:𝐴–1-1-onto→𝐵 ∧ 𝑔:𝐶–1-1-onto→𝐷) ∧ (𝑥:𝐶⟶𝐴 ∧ 𝑦:𝐷⟶𝐵)) → ((𝑦 ∘ 𝑔) = (((𝑓 ∘ 𝑥) ∘ ◡𝑔) ∘ 𝑔) ↔ (𝑦 ∘ 𝑔) = (𝑓 ∘ 𝑥))) |
83 | | eqcom 2167 |
. . . . . . . . . 10
⊢ ((𝑦 ∘ 𝑔) = (𝑓 ∘ 𝑥) ↔ (𝑓 ∘ 𝑥) = (𝑦 ∘ 𝑔)) |
84 | 82, 83 | bitrdi 195 |
. . . . . . . . 9
⊢ (((𝑓:𝐴–1-1-onto→𝐵 ∧ 𝑔:𝐶–1-1-onto→𝐷) ∧ (𝑥:𝐶⟶𝐴 ∧ 𝑦:𝐷⟶𝐵)) → ((𝑦 ∘ 𝑔) = (((𝑓 ∘ 𝑥) ∘ ◡𝑔) ∘ 𝑔) ↔ (𝑓 ∘ 𝑥) = (𝑦 ∘ 𝑔))) |
85 | 72, 84 | bitr4d 190 |
. . . . . . . 8
⊢ (((𝑓:𝐴–1-1-onto→𝐵 ∧ 𝑔:𝐶–1-1-onto→𝐷) ∧ (𝑥:𝐶⟶𝐴 ∧ 𝑦:𝐷⟶𝐵)) → ((𝑓 ∘ 𝑥) = (𝑓 ∘ (◡𝑓 ∘ (𝑦 ∘ 𝑔))) ↔ (𝑦 ∘ 𝑔) = (((𝑓 ∘ 𝑥) ∘ ◡𝑔) ∘ 𝑔))) |
86 | | f1of1 5431 |
. . . . . . . . . 10
⊢ (𝑓:𝐴–1-1-onto→𝐵 → 𝑓:𝐴–1-1→𝐵) |
87 | 86 | ad2antrr 480 |
. . . . . . . . 9
⊢ (((𝑓:𝐴–1-1-onto→𝐵 ∧ 𝑔:𝐶–1-1-onto→𝐷) ∧ (𝑥:𝐶⟶𝐴 ∧ 𝑦:𝐷⟶𝐵)) → 𝑓:𝐴–1-1→𝐵) |
88 | | simprl 521 |
. . . . . . . . 9
⊢ (((𝑓:𝐴–1-1-onto→𝐵 ∧ 𝑔:𝐶–1-1-onto→𝐷) ∧ (𝑥:𝐶⟶𝐴 ∧ 𝑦:𝐷⟶𝐵)) → 𝑥:𝐶⟶𝐴) |
89 | 58 | adantrl 470 |
. . . . . . . . 9
⊢ (((𝑓:𝐴–1-1-onto→𝐵 ∧ 𝑔:𝐶–1-1-onto→𝐷) ∧ (𝑥:𝐶⟶𝐴 ∧ 𝑦:𝐷⟶𝐵)) → (◡𝑓 ∘ (𝑦 ∘ 𝑔)):𝐶⟶𝐴) |
90 | | cocan1 5755 |
. . . . . . . . 9
⊢ ((𝑓:𝐴–1-1→𝐵 ∧ 𝑥:𝐶⟶𝐴 ∧ (◡𝑓 ∘ (𝑦 ∘ 𝑔)):𝐶⟶𝐴) → ((𝑓 ∘ 𝑥) = (𝑓 ∘ (◡𝑓 ∘ (𝑦 ∘ 𝑔))) ↔ 𝑥 = (◡𝑓 ∘ (𝑦 ∘ 𝑔)))) |
91 | 87, 88, 89, 90 | syl3anc 1228 |
. . . . . . . 8
⊢ (((𝑓:𝐴–1-1-onto→𝐵 ∧ 𝑔:𝐶–1-1-onto→𝐷) ∧ (𝑥:𝐶⟶𝐴 ∧ 𝑦:𝐷⟶𝐵)) → ((𝑓 ∘ 𝑥) = (𝑓 ∘ (◡𝑓 ∘ (𝑦 ∘ 𝑔))) ↔ 𝑥 = (◡𝑓 ∘ (𝑦 ∘ 𝑔)))) |
92 | 24 | adantr 274 |
. . . . . . . . 9
⊢ (((𝑓:𝐴–1-1-onto→𝐵 ∧ 𝑔:𝐶–1-1-onto→𝐷) ∧ (𝑥:𝐶⟶𝐴 ∧ 𝑦:𝐷⟶𝐵)) → 𝑔:𝐶–onto→𝐷) |
93 | | ffn 5337 |
. . . . . . . . . 10
⊢ (𝑦:𝐷⟶𝐵 → 𝑦 Fn 𝐷) |
94 | 93 | ad2antll 483 |
. . . . . . . . 9
⊢ (((𝑓:𝐴–1-1-onto→𝐵 ∧ 𝑔:𝐶–1-1-onto→𝐷) ∧ (𝑥:𝐶⟶𝐴 ∧ 𝑦:𝐷⟶𝐵)) → 𝑦 Fn 𝐷) |
95 | 42 | adantrr 471 |
. . . . . . . . . 10
⊢ (((𝑓:𝐴–1-1-onto→𝐵 ∧ 𝑔:𝐶–1-1-onto→𝐷) ∧ (𝑥:𝐶⟶𝐴 ∧ 𝑦:𝐷⟶𝐵)) → ((𝑓 ∘ 𝑥) ∘ ◡𝑔):𝐷⟶𝐵) |
96 | | ffn 5337 |
. . . . . . . . . 10
⊢ (((𝑓 ∘ 𝑥) ∘ ◡𝑔):𝐷⟶𝐵 → ((𝑓 ∘ 𝑥) ∘ ◡𝑔) Fn 𝐷) |
97 | 95, 96 | syl 14 |
. . . . . . . . 9
⊢ (((𝑓:𝐴–1-1-onto→𝐵 ∧ 𝑔:𝐶–1-1-onto→𝐷) ∧ (𝑥:𝐶⟶𝐴 ∧ 𝑦:𝐷⟶𝐵)) → ((𝑓 ∘ 𝑥) ∘ ◡𝑔) Fn 𝐷) |
98 | | cocan2 5756 |
. . . . . . . . 9
⊢ ((𝑔:𝐶–onto→𝐷 ∧ 𝑦 Fn 𝐷 ∧ ((𝑓 ∘ 𝑥) ∘ ◡𝑔) Fn 𝐷) → ((𝑦 ∘ 𝑔) = (((𝑓 ∘ 𝑥) ∘ ◡𝑔) ∘ 𝑔) ↔ 𝑦 = ((𝑓 ∘ 𝑥) ∘ ◡𝑔))) |
99 | 92, 94, 97, 98 | syl3anc 1228 |
. . . . . . . 8
⊢ (((𝑓:𝐴–1-1-onto→𝐵 ∧ 𝑔:𝐶–1-1-onto→𝐷) ∧ (𝑥:𝐶⟶𝐴 ∧ 𝑦:𝐷⟶𝐵)) → ((𝑦 ∘ 𝑔) = (((𝑓 ∘ 𝑥) ∘ ◡𝑔) ∘ 𝑔) ↔ 𝑦 = ((𝑓 ∘ 𝑥) ∘ ◡𝑔))) |
100 | 85, 91, 99 | 3bitr3d 217 |
. . . . . . 7
⊢ (((𝑓:𝐴–1-1-onto→𝐵 ∧ 𝑔:𝐶–1-1-onto→𝐷) ∧ (𝑥:𝐶⟶𝐴 ∧ 𝑦:𝐷⟶𝐵)) → (𝑥 = (◡𝑓 ∘ (𝑦 ∘ 𝑔)) ↔ 𝑦 = ((𝑓 ∘ 𝑥) ∘ ◡𝑔))) |
101 | 100 | ex 114 |
. . . . . 6
⊢ ((𝑓:𝐴–1-1-onto→𝐵 ∧ 𝑔:𝐶–1-1-onto→𝐷) → ((𝑥:𝐶⟶𝐴 ∧ 𝑦:𝐷⟶𝐵) → (𝑥 = (◡𝑓 ∘ (𝑦 ∘ 𝑔)) ↔ 𝑦 = ((𝑓 ∘ 𝑥) ∘ ◡𝑔)))) |
102 | 31, 47, 101 | syl2ani 406 |
. . . . 5
⊢ ((𝑓:𝐴–1-1-onto→𝐵 ∧ 𝑔:𝐶–1-1-onto→𝐷) → ((𝑥 ∈ (𝐴 ↑𝑚 𝐶) ∧ 𝑦 ∈ (𝐵 ↑𝑚 𝐷)) → (𝑥 = (◡𝑓 ∘ (𝑦 ∘ 𝑔)) ↔ 𝑦 = ((𝑓 ∘ 𝑥) ∘ ◡𝑔)))) |
103 | 16, 30, 46, 62, 102 | en3d 6735 |
. . . 4
⊢ ((𝑓:𝐴–1-1-onto→𝐵 ∧ 𝑔:𝐶–1-1-onto→𝐷) → (𝐴 ↑𝑚 𝐶) ≈ (𝐵 ↑𝑚 𝐷)) |
104 | 103 | exlimivv 1884 |
. . 3
⊢
(∃𝑓∃𝑔(𝑓:𝐴–1-1-onto→𝐵 ∧ 𝑔:𝐶–1-1-onto→𝐷) → (𝐴 ↑𝑚 𝐶) ≈ (𝐵 ↑𝑚 𝐷)) |
105 | 3, 104 | sylbir 134 |
. 2
⊢
((∃𝑓 𝑓:𝐴–1-1-onto→𝐵 ∧ ∃𝑔 𝑔:𝐶–1-1-onto→𝐷) → (𝐴 ↑𝑚 𝐶) ≈ (𝐵 ↑𝑚 𝐷)) |
106 | 1, 2, 105 | syl2anb 289 |
1
⊢ ((𝐴 ≈ 𝐵 ∧ 𝐶 ≈ 𝐷) → (𝐴 ↑𝑚 𝐶) ≈ (𝐵 ↑𝑚 𝐷)) |