ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  disjxp1 GIF version

Theorem disjxp1 6141
Description: The sets of a cartesian product are disjoint if the sets in the first argument are disjoint. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
Hypothesis
Ref Expression
disjxp1.1 (𝜑Disj 𝑥𝐴 𝐵)
Assertion
Ref Expression
disjxp1 (𝜑Disj 𝑥𝐴 (𝐵 × 𝐶))
Distinct variable groups:   𝑥,𝐴   𝜑,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥)

Proof of Theorem disjxp1
Dummy variables 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xp1st 6071 . . . . . . 7 (𝑦 ∈ (𝐵 × 𝐶) → (1st𝑦) ∈ 𝐵)
2 xp1st 6071 . . . . . . 7 (𝑦 ∈ (𝑤 / 𝑥𝐵 × 𝑤 / 𝑥𝐶) → (1st𝑦) ∈ 𝑤 / 𝑥𝐵)
3 disjxp1.1 . . . . . . . . . . . 12 (𝜑Disj 𝑥𝐴 𝐵)
4 df-disj 3915 . . . . . . . . . . . 12 (Disj 𝑥𝐴 𝐵 ↔ ∀𝑧∃*𝑥𝐴 𝑧𝐵)
53, 4sylib 121 . . . . . . . . . . 11 (𝜑 → ∀𝑧∃*𝑥𝐴 𝑧𝐵)
6 1stexg 6073 . . . . . . . . . . . . 13 (𝑦 ∈ V → (1st𝑦) ∈ V)
76elv 2693 . . . . . . . . . . . 12 (1st𝑦) ∈ V
8 eleq1 2203 . . . . . . . . . . . . 13 (𝑧 = (1st𝑦) → (𝑧𝐵 ↔ (1st𝑦) ∈ 𝐵))
98rmobidv 2622 . . . . . . . . . . . 12 (𝑧 = (1st𝑦) → (∃*𝑥𝐴 𝑧𝐵 ↔ ∃*𝑥𝐴 (1st𝑦) ∈ 𝐵))
107, 9spcv 2783 . . . . . . . . . . 11 (∀𝑧∃*𝑥𝐴 𝑧𝐵 → ∃*𝑥𝐴 (1st𝑦) ∈ 𝐵)
115, 10syl 14 . . . . . . . . . 10 (𝜑 → ∃*𝑥𝐴 (1st𝑦) ∈ 𝐵)
12 nfcv 2282 . . . . . . . . . . 11 𝑥𝐴
13 nfcv 2282 . . . . . . . . . . 11 𝑤𝐴
14 nfcsb1v 3040 . . . . . . . . . . . 12 𝑥𝑤 / 𝑥𝐵
1514nfel2 2295 . . . . . . . . . . 11 𝑥(1st𝑦) ∈ 𝑤 / 𝑥𝐵
16 csbeq1a 3016 . . . . . . . . . . . 12 (𝑥 = 𝑤𝐵 = 𝑤 / 𝑥𝐵)
1716eleq2d 2210 . . . . . . . . . . 11 (𝑥 = 𝑤 → ((1st𝑦) ∈ 𝐵 ↔ (1st𝑦) ∈ 𝑤 / 𝑥𝐵))
1812, 13, 15, 17rmo4f 2886 . . . . . . . . . 10 (∃*𝑥𝐴 (1st𝑦) ∈ 𝐵 ↔ ∀𝑥𝐴𝑤𝐴 (((1st𝑦) ∈ 𝐵 ∧ (1st𝑦) ∈ 𝑤 / 𝑥𝐵) → 𝑥 = 𝑤))
1911, 18sylib 121 . . . . . . . . 9 (𝜑 → ∀𝑥𝐴𝑤𝐴 (((1st𝑦) ∈ 𝐵 ∧ (1st𝑦) ∈ 𝑤 / 𝑥𝐵) → 𝑥 = 𝑤))
2019r19.21bi 2523 . . . . . . . 8 ((𝜑𝑥𝐴) → ∀𝑤𝐴 (((1st𝑦) ∈ 𝐵 ∧ (1st𝑦) ∈ 𝑤 / 𝑥𝐵) → 𝑥 = 𝑤))
2120r19.21bi 2523 . . . . . . 7 (((𝜑𝑥𝐴) ∧ 𝑤𝐴) → (((1st𝑦) ∈ 𝐵 ∧ (1st𝑦) ∈ 𝑤 / 𝑥𝐵) → 𝑥 = 𝑤))
221, 2, 21syl2ani 406 . . . . . 6 (((𝜑𝑥𝐴) ∧ 𝑤𝐴) → ((𝑦 ∈ (𝐵 × 𝐶) ∧ 𝑦 ∈ (𝑤 / 𝑥𝐵 × 𝑤 / 𝑥𝐶)) → 𝑥 = 𝑤))
2322ralrimiva 2508 . . . . 5 ((𝜑𝑥𝐴) → ∀𝑤𝐴 ((𝑦 ∈ (𝐵 × 𝐶) ∧ 𝑦 ∈ (𝑤 / 𝑥𝐵 × 𝑤 / 𝑥𝐶)) → 𝑥 = 𝑤))
2423ralrimiva 2508 . . . 4 (𝜑 → ∀𝑥𝐴𝑤𝐴 ((𝑦 ∈ (𝐵 × 𝐶) ∧ 𝑦 ∈ (𝑤 / 𝑥𝐵 × 𝑤 / 𝑥𝐶)) → 𝑥 = 𝑤))
25 nfcsb1v 3040 . . . . . . 7 𝑥𝑤 / 𝑥𝐶
2614, 25nfxp 4574 . . . . . 6 𝑥(𝑤 / 𝑥𝐵 × 𝑤 / 𝑥𝐶)
2726nfel2 2295 . . . . 5 𝑥 𝑦 ∈ (𝑤 / 𝑥𝐵 × 𝑤 / 𝑥𝐶)
28 csbeq1a 3016 . . . . . . 7 (𝑥 = 𝑤𝐶 = 𝑤 / 𝑥𝐶)
2916, 28xpeq12d 4572 . . . . . 6 (𝑥 = 𝑤 → (𝐵 × 𝐶) = (𝑤 / 𝑥𝐵 × 𝑤 / 𝑥𝐶))
3029eleq2d 2210 . . . . 5 (𝑥 = 𝑤 → (𝑦 ∈ (𝐵 × 𝐶) ↔ 𝑦 ∈ (𝑤 / 𝑥𝐵 × 𝑤 / 𝑥𝐶)))
3112, 13, 27, 30rmo4f 2886 . . . 4 (∃*𝑥𝐴 𝑦 ∈ (𝐵 × 𝐶) ↔ ∀𝑥𝐴𝑤𝐴 ((𝑦 ∈ (𝐵 × 𝐶) ∧ 𝑦 ∈ (𝑤 / 𝑥𝐵 × 𝑤 / 𝑥𝐶)) → 𝑥 = 𝑤))
3224, 31sylibr 133 . . 3 (𝜑 → ∃*𝑥𝐴 𝑦 ∈ (𝐵 × 𝐶))
3332alrimiv 1847 . 2 (𝜑 → ∀𝑦∃*𝑥𝐴 𝑦 ∈ (𝐵 × 𝐶))
34 df-disj 3915 . 2 (Disj 𝑥𝐴 (𝐵 × 𝐶) ↔ ∀𝑦∃*𝑥𝐴 𝑦 ∈ (𝐵 × 𝐶))
3533, 34sylibr 133 1 (𝜑Disj 𝑥𝐴 (𝐵 × 𝐶))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wal 1330   = wceq 1332  wcel 1481  wral 2417  ∃*wrmo 2420  Vcvv 2689  csb 3007  Disj wdisj 3914   × cxp 4545  cfv 5131  1st c1st 6044
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-pow 4106  ax-pr 4139  ax-un 4363
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ral 2422  df-rex 2423  df-rmo 2425  df-v 2691  df-sbc 2914  df-csb 3008  df-un 3080  df-in 3082  df-ss 3089  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-disj 3915  df-br 3938  df-opab 3998  df-mpt 3999  df-id 4223  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-fo 5137  df-fv 5139  df-1st 6046
This theorem is referenced by:  disjsnxp  6142
  Copyright terms: Public domain W3C validator