ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  disjxp1 GIF version

Theorem disjxp1 6289
Description: The sets of a cartesian product are disjoint if the sets in the first argument are disjoint. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
Hypothesis
Ref Expression
disjxp1.1 (𝜑Disj 𝑥𝐴 𝐵)
Assertion
Ref Expression
disjxp1 (𝜑Disj 𝑥𝐴 (𝐵 × 𝐶))
Distinct variable groups:   𝑥,𝐴   𝜑,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥)

Proof of Theorem disjxp1
Dummy variables 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xp1st 6218 . . . . . . 7 (𝑦 ∈ (𝐵 × 𝐶) → (1st𝑦) ∈ 𝐵)
2 xp1st 6218 . . . . . . 7 (𝑦 ∈ (𝑤 / 𝑥𝐵 × 𝑤 / 𝑥𝐶) → (1st𝑦) ∈ 𝑤 / 𝑥𝐵)
3 disjxp1.1 . . . . . . . . . . . 12 (𝜑Disj 𝑥𝐴 𝐵)
4 df-disj 4007 . . . . . . . . . . . 12 (Disj 𝑥𝐴 𝐵 ↔ ∀𝑧∃*𝑥𝐴 𝑧𝐵)
53, 4sylib 122 . . . . . . . . . . 11 (𝜑 → ∀𝑧∃*𝑥𝐴 𝑧𝐵)
6 1stexg 6220 . . . . . . . . . . . . 13 (𝑦 ∈ V → (1st𝑦) ∈ V)
76elv 2764 . . . . . . . . . . . 12 (1st𝑦) ∈ V
8 eleq1 2256 . . . . . . . . . . . . 13 (𝑧 = (1st𝑦) → (𝑧𝐵 ↔ (1st𝑦) ∈ 𝐵))
98rmobidv 2683 . . . . . . . . . . . 12 (𝑧 = (1st𝑦) → (∃*𝑥𝐴 𝑧𝐵 ↔ ∃*𝑥𝐴 (1st𝑦) ∈ 𝐵))
107, 9spcv 2854 . . . . . . . . . . 11 (∀𝑧∃*𝑥𝐴 𝑧𝐵 → ∃*𝑥𝐴 (1st𝑦) ∈ 𝐵)
115, 10syl 14 . . . . . . . . . 10 (𝜑 → ∃*𝑥𝐴 (1st𝑦) ∈ 𝐵)
12 nfcv 2336 . . . . . . . . . . 11 𝑥𝐴
13 nfcv 2336 . . . . . . . . . . 11 𝑤𝐴
14 nfcsb1v 3113 . . . . . . . . . . . 12 𝑥𝑤 / 𝑥𝐵
1514nfel2 2349 . . . . . . . . . . 11 𝑥(1st𝑦) ∈ 𝑤 / 𝑥𝐵
16 csbeq1a 3089 . . . . . . . . . . . 12 (𝑥 = 𝑤𝐵 = 𝑤 / 𝑥𝐵)
1716eleq2d 2263 . . . . . . . . . . 11 (𝑥 = 𝑤 → ((1st𝑦) ∈ 𝐵 ↔ (1st𝑦) ∈ 𝑤 / 𝑥𝐵))
1812, 13, 15, 17rmo4f 2958 . . . . . . . . . 10 (∃*𝑥𝐴 (1st𝑦) ∈ 𝐵 ↔ ∀𝑥𝐴𝑤𝐴 (((1st𝑦) ∈ 𝐵 ∧ (1st𝑦) ∈ 𝑤 / 𝑥𝐵) → 𝑥 = 𝑤))
1911, 18sylib 122 . . . . . . . . 9 (𝜑 → ∀𝑥𝐴𝑤𝐴 (((1st𝑦) ∈ 𝐵 ∧ (1st𝑦) ∈ 𝑤 / 𝑥𝐵) → 𝑥 = 𝑤))
2019r19.21bi 2582 . . . . . . . 8 ((𝜑𝑥𝐴) → ∀𝑤𝐴 (((1st𝑦) ∈ 𝐵 ∧ (1st𝑦) ∈ 𝑤 / 𝑥𝐵) → 𝑥 = 𝑤))
2120r19.21bi 2582 . . . . . . 7 (((𝜑𝑥𝐴) ∧ 𝑤𝐴) → (((1st𝑦) ∈ 𝐵 ∧ (1st𝑦) ∈ 𝑤 / 𝑥𝐵) → 𝑥 = 𝑤))
221, 2, 21syl2ani 408 . . . . . 6 (((𝜑𝑥𝐴) ∧ 𝑤𝐴) → ((𝑦 ∈ (𝐵 × 𝐶) ∧ 𝑦 ∈ (𝑤 / 𝑥𝐵 × 𝑤 / 𝑥𝐶)) → 𝑥 = 𝑤))
2322ralrimiva 2567 . . . . 5 ((𝜑𝑥𝐴) → ∀𝑤𝐴 ((𝑦 ∈ (𝐵 × 𝐶) ∧ 𝑦 ∈ (𝑤 / 𝑥𝐵 × 𝑤 / 𝑥𝐶)) → 𝑥 = 𝑤))
2423ralrimiva 2567 . . . 4 (𝜑 → ∀𝑥𝐴𝑤𝐴 ((𝑦 ∈ (𝐵 × 𝐶) ∧ 𝑦 ∈ (𝑤 / 𝑥𝐵 × 𝑤 / 𝑥𝐶)) → 𝑥 = 𝑤))
25 nfcsb1v 3113 . . . . . . 7 𝑥𝑤 / 𝑥𝐶
2614, 25nfxp 4686 . . . . . 6 𝑥(𝑤 / 𝑥𝐵 × 𝑤 / 𝑥𝐶)
2726nfel2 2349 . . . . 5 𝑥 𝑦 ∈ (𝑤 / 𝑥𝐵 × 𝑤 / 𝑥𝐶)
28 csbeq1a 3089 . . . . . . 7 (𝑥 = 𝑤𝐶 = 𝑤 / 𝑥𝐶)
2916, 28xpeq12d 4684 . . . . . 6 (𝑥 = 𝑤 → (𝐵 × 𝐶) = (𝑤 / 𝑥𝐵 × 𝑤 / 𝑥𝐶))
3029eleq2d 2263 . . . . 5 (𝑥 = 𝑤 → (𝑦 ∈ (𝐵 × 𝐶) ↔ 𝑦 ∈ (𝑤 / 𝑥𝐵 × 𝑤 / 𝑥𝐶)))
3112, 13, 27, 30rmo4f 2958 . . . 4 (∃*𝑥𝐴 𝑦 ∈ (𝐵 × 𝐶) ↔ ∀𝑥𝐴𝑤𝐴 ((𝑦 ∈ (𝐵 × 𝐶) ∧ 𝑦 ∈ (𝑤 / 𝑥𝐵 × 𝑤 / 𝑥𝐶)) → 𝑥 = 𝑤))
3224, 31sylibr 134 . . 3 (𝜑 → ∃*𝑥𝐴 𝑦 ∈ (𝐵 × 𝐶))
3332alrimiv 1885 . 2 (𝜑 → ∀𝑦∃*𝑥𝐴 𝑦 ∈ (𝐵 × 𝐶))
34 df-disj 4007 . 2 (Disj 𝑥𝐴 (𝐵 × 𝐶) ↔ ∀𝑦∃*𝑥𝐴 𝑦 ∈ (𝐵 × 𝐶))
3533, 34sylibr 134 1 (𝜑Disj 𝑥𝐴 (𝐵 × 𝐶))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wal 1362   = wceq 1364  wcel 2164  wral 2472  ∃*wrmo 2475  Vcvv 2760  csb 3080  Disj wdisj 4006   × cxp 4657  cfv 5254  1st c1st 6191
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-rmo 2480  df-v 2762  df-sbc 2986  df-csb 3081  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-disj 4007  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-fo 5260  df-fv 5262  df-1st 6193
This theorem is referenced by:  disjsnxp  6290
  Copyright terms: Public domain W3C validator