Step | Hyp | Ref
| Expression |
1 | | xp1st 6144 |
. . . . . . 7
⊢ (𝑦 ∈ (𝐵 × 𝐶) → (1st ‘𝑦) ∈ 𝐵) |
2 | | xp1st 6144 |
. . . . . . 7
⊢ (𝑦 ∈ (⦋𝑤 / 𝑥⦌𝐵 × ⦋𝑤 / 𝑥⦌𝐶) → (1st ‘𝑦) ∈ ⦋𝑤 / 𝑥⦌𝐵) |
3 | | disjxp1.1 |
. . . . . . . . . . . 12
⊢ (𝜑 → Disj 𝑥 ∈ 𝐴 𝐵) |
4 | | df-disj 3967 |
. . . . . . . . . . . 12
⊢
(Disj 𝑥
∈ 𝐴 𝐵 ↔ ∀𝑧∃*𝑥 ∈ 𝐴 𝑧 ∈ 𝐵) |
5 | 3, 4 | sylib 121 |
. . . . . . . . . . 11
⊢ (𝜑 → ∀𝑧∃*𝑥 ∈ 𝐴 𝑧 ∈ 𝐵) |
6 | | 1stexg 6146 |
. . . . . . . . . . . . 13
⊢ (𝑦 ∈ V → (1st
‘𝑦) ∈
V) |
7 | 6 | elv 2734 |
. . . . . . . . . . . 12
⊢
(1st ‘𝑦) ∈ V |
8 | | eleq1 2233 |
. . . . . . . . . . . . 13
⊢ (𝑧 = (1st ‘𝑦) → (𝑧 ∈ 𝐵 ↔ (1st ‘𝑦) ∈ 𝐵)) |
9 | 8 | rmobidv 2658 |
. . . . . . . . . . . 12
⊢ (𝑧 = (1st ‘𝑦) → (∃*𝑥 ∈ 𝐴 𝑧 ∈ 𝐵 ↔ ∃*𝑥 ∈ 𝐴 (1st ‘𝑦) ∈ 𝐵)) |
10 | 7, 9 | spcv 2824 |
. . . . . . . . . . 11
⊢
(∀𝑧∃*𝑥 ∈ 𝐴 𝑧 ∈ 𝐵 → ∃*𝑥 ∈ 𝐴 (1st ‘𝑦) ∈ 𝐵) |
11 | 5, 10 | syl 14 |
. . . . . . . . . 10
⊢ (𝜑 → ∃*𝑥 ∈ 𝐴 (1st ‘𝑦) ∈ 𝐵) |
12 | | nfcv 2312 |
. . . . . . . . . . 11
⊢
Ⅎ𝑥𝐴 |
13 | | nfcv 2312 |
. . . . . . . . . . 11
⊢
Ⅎ𝑤𝐴 |
14 | | nfcsb1v 3082 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑥⦋𝑤 / 𝑥⦌𝐵 |
15 | 14 | nfel2 2325 |
. . . . . . . . . . 11
⊢
Ⅎ𝑥(1st ‘𝑦) ∈ ⦋𝑤 / 𝑥⦌𝐵 |
16 | | csbeq1a 3058 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑤 → 𝐵 = ⦋𝑤 / 𝑥⦌𝐵) |
17 | 16 | eleq2d 2240 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑤 → ((1st ‘𝑦) ∈ 𝐵 ↔ (1st ‘𝑦) ∈ ⦋𝑤 / 𝑥⦌𝐵)) |
18 | 12, 13, 15, 17 | rmo4f 2928 |
. . . . . . . . . 10
⊢
(∃*𝑥 ∈
𝐴 (1st
‘𝑦) ∈ 𝐵 ↔ ∀𝑥 ∈ 𝐴 ∀𝑤 ∈ 𝐴 (((1st ‘𝑦) ∈ 𝐵 ∧ (1st ‘𝑦) ∈ ⦋𝑤 / 𝑥⦌𝐵) → 𝑥 = 𝑤)) |
19 | 11, 18 | sylib 121 |
. . . . . . . . 9
⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑤 ∈ 𝐴 (((1st ‘𝑦) ∈ 𝐵 ∧ (1st ‘𝑦) ∈ ⦋𝑤 / 𝑥⦌𝐵) → 𝑥 = 𝑤)) |
20 | 19 | r19.21bi 2558 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ∀𝑤 ∈ 𝐴 (((1st ‘𝑦) ∈ 𝐵 ∧ (1st ‘𝑦) ∈ ⦋𝑤 / 𝑥⦌𝐵) → 𝑥 = 𝑤)) |
21 | 20 | r19.21bi 2558 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑤 ∈ 𝐴) → (((1st ‘𝑦) ∈ 𝐵 ∧ (1st ‘𝑦) ∈ ⦋𝑤 / 𝑥⦌𝐵) → 𝑥 = 𝑤)) |
22 | 1, 2, 21 | syl2ani 406 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑤 ∈ 𝐴) → ((𝑦 ∈ (𝐵 × 𝐶) ∧ 𝑦 ∈ (⦋𝑤 / 𝑥⦌𝐵 × ⦋𝑤 / 𝑥⦌𝐶)) → 𝑥 = 𝑤)) |
23 | 22 | ralrimiva 2543 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ∀𝑤 ∈ 𝐴 ((𝑦 ∈ (𝐵 × 𝐶) ∧ 𝑦 ∈ (⦋𝑤 / 𝑥⦌𝐵 × ⦋𝑤 / 𝑥⦌𝐶)) → 𝑥 = 𝑤)) |
24 | 23 | ralrimiva 2543 |
. . . 4
⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑤 ∈ 𝐴 ((𝑦 ∈ (𝐵 × 𝐶) ∧ 𝑦 ∈ (⦋𝑤 / 𝑥⦌𝐵 × ⦋𝑤 / 𝑥⦌𝐶)) → 𝑥 = 𝑤)) |
25 | | nfcsb1v 3082 |
. . . . . . 7
⊢
Ⅎ𝑥⦋𝑤 / 𝑥⦌𝐶 |
26 | 14, 25 | nfxp 4638 |
. . . . . 6
⊢
Ⅎ𝑥(⦋𝑤 / 𝑥⦌𝐵 × ⦋𝑤 / 𝑥⦌𝐶) |
27 | 26 | nfel2 2325 |
. . . . 5
⊢
Ⅎ𝑥 𝑦 ∈ (⦋𝑤 / 𝑥⦌𝐵 × ⦋𝑤 / 𝑥⦌𝐶) |
28 | | csbeq1a 3058 |
. . . . . . 7
⊢ (𝑥 = 𝑤 → 𝐶 = ⦋𝑤 / 𝑥⦌𝐶) |
29 | 16, 28 | xpeq12d 4636 |
. . . . . 6
⊢ (𝑥 = 𝑤 → (𝐵 × 𝐶) = (⦋𝑤 / 𝑥⦌𝐵 × ⦋𝑤 / 𝑥⦌𝐶)) |
30 | 29 | eleq2d 2240 |
. . . . 5
⊢ (𝑥 = 𝑤 → (𝑦 ∈ (𝐵 × 𝐶) ↔ 𝑦 ∈ (⦋𝑤 / 𝑥⦌𝐵 × ⦋𝑤 / 𝑥⦌𝐶))) |
31 | 12, 13, 27, 30 | rmo4f 2928 |
. . . 4
⊢
(∃*𝑥 ∈
𝐴 𝑦 ∈ (𝐵 × 𝐶) ↔ ∀𝑥 ∈ 𝐴 ∀𝑤 ∈ 𝐴 ((𝑦 ∈ (𝐵 × 𝐶) ∧ 𝑦 ∈ (⦋𝑤 / 𝑥⦌𝐵 × ⦋𝑤 / 𝑥⦌𝐶)) → 𝑥 = 𝑤)) |
32 | 24, 31 | sylibr 133 |
. . 3
⊢ (𝜑 → ∃*𝑥 ∈ 𝐴 𝑦 ∈ (𝐵 × 𝐶)) |
33 | 32 | alrimiv 1867 |
. 2
⊢ (𝜑 → ∀𝑦∃*𝑥 ∈ 𝐴 𝑦 ∈ (𝐵 × 𝐶)) |
34 | | df-disj 3967 |
. 2
⊢
(Disj 𝑥
∈ 𝐴 (𝐵 × 𝐶) ↔ ∀𝑦∃*𝑥 ∈ 𝐴 𝑦 ∈ (𝐵 × 𝐶)) |
35 | 33, 34 | sylibr 133 |
1
⊢ (𝜑 → Disj 𝑥 ∈ 𝐴 (𝐵 × 𝐶)) |