ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  disjxp1 GIF version

Theorem disjxp1 6017
Description: The sets of a cartesian product are disjoint if the sets in the first argument are disjoint. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
Hypothesis
Ref Expression
disjxp1.1 (𝜑Disj 𝑥𝐴 𝐵)
Assertion
Ref Expression
disjxp1 (𝜑Disj 𝑥𝐴 (𝐵 × 𝐶))
Distinct variable groups:   𝑥,𝐴   𝜑,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥)

Proof of Theorem disjxp1
Dummy variables 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xp1st 5952 . . . . . . 7 (𝑦 ∈ (𝐵 × 𝐶) → (1st𝑦) ∈ 𝐵)
2 xp1st 5952 . . . . . . 7 (𝑦 ∈ (𝑤 / 𝑥𝐵 × 𝑤 / 𝑥𝐶) → (1st𝑦) ∈ 𝑤 / 𝑥𝐵)
3 disjxp1.1 . . . . . . . . . . . 12 (𝜑Disj 𝑥𝐴 𝐵)
4 df-disj 3831 . . . . . . . . . . . 12 (Disj 𝑥𝐴 𝐵 ↔ ∀𝑧∃*𝑥𝐴 𝑧𝐵)
53, 4sylib 121 . . . . . . . . . . 11 (𝜑 → ∀𝑧∃*𝑥𝐴 𝑧𝐵)
6 1stexg 5954 . . . . . . . . . . . . 13 (𝑦 ∈ V → (1st𝑦) ∈ V)
76elv 2626 . . . . . . . . . . . 12 (1st𝑦) ∈ V
8 eleq1 2151 . . . . . . . . . . . . 13 (𝑧 = (1st𝑦) → (𝑧𝐵 ↔ (1st𝑦) ∈ 𝐵))
98rmobidv 2558 . . . . . . . . . . . 12 (𝑧 = (1st𝑦) → (∃*𝑥𝐴 𝑧𝐵 ↔ ∃*𝑥𝐴 (1st𝑦) ∈ 𝐵))
107, 9spcv 2715 . . . . . . . . . . 11 (∀𝑧∃*𝑥𝐴 𝑧𝐵 → ∃*𝑥𝐴 (1st𝑦) ∈ 𝐵)
115, 10syl 14 . . . . . . . . . 10 (𝜑 → ∃*𝑥𝐴 (1st𝑦) ∈ 𝐵)
12 nfcv 2229 . . . . . . . . . . 11 𝑥𝐴
13 nfcv 2229 . . . . . . . . . . 11 𝑤𝐴
14 nfcsb1v 2966 . . . . . . . . . . . 12 𝑥𝑤 / 𝑥𝐵
1514nfel2 2242 . . . . . . . . . . 11 𝑥(1st𝑦) ∈ 𝑤 / 𝑥𝐵
16 csbeq1a 2944 . . . . . . . . . . . 12 (𝑥 = 𝑤𝐵 = 𝑤 / 𝑥𝐵)
1716eleq2d 2158 . . . . . . . . . . 11 (𝑥 = 𝑤 → ((1st𝑦) ∈ 𝐵 ↔ (1st𝑦) ∈ 𝑤 / 𝑥𝐵))
1812, 13, 15, 17rmo4f 2816 . . . . . . . . . 10 (∃*𝑥𝐴 (1st𝑦) ∈ 𝐵 ↔ ∀𝑥𝐴𝑤𝐴 (((1st𝑦) ∈ 𝐵 ∧ (1st𝑦) ∈ 𝑤 / 𝑥𝐵) → 𝑥 = 𝑤))
1911, 18sylib 121 . . . . . . . . 9 (𝜑 → ∀𝑥𝐴𝑤𝐴 (((1st𝑦) ∈ 𝐵 ∧ (1st𝑦) ∈ 𝑤 / 𝑥𝐵) → 𝑥 = 𝑤))
2019r19.21bi 2462 . . . . . . . 8 ((𝜑𝑥𝐴) → ∀𝑤𝐴 (((1st𝑦) ∈ 𝐵 ∧ (1st𝑦) ∈ 𝑤 / 𝑥𝐵) → 𝑥 = 𝑤))
2120r19.21bi 2462 . . . . . . 7 (((𝜑𝑥𝐴) ∧ 𝑤𝐴) → (((1st𝑦) ∈ 𝐵 ∧ (1st𝑦) ∈ 𝑤 / 𝑥𝐵) → 𝑥 = 𝑤))
221, 2, 21syl2ani 401 . . . . . 6 (((𝜑𝑥𝐴) ∧ 𝑤𝐴) → ((𝑦 ∈ (𝐵 × 𝐶) ∧ 𝑦 ∈ (𝑤 / 𝑥𝐵 × 𝑤 / 𝑥𝐶)) → 𝑥 = 𝑤))
2322ralrimiva 2447 . . . . 5 ((𝜑𝑥𝐴) → ∀𝑤𝐴 ((𝑦 ∈ (𝐵 × 𝐶) ∧ 𝑦 ∈ (𝑤 / 𝑥𝐵 × 𝑤 / 𝑥𝐶)) → 𝑥 = 𝑤))
2423ralrimiva 2447 . . . 4 (𝜑 → ∀𝑥𝐴𝑤𝐴 ((𝑦 ∈ (𝐵 × 𝐶) ∧ 𝑦 ∈ (𝑤 / 𝑥𝐵 × 𝑤 / 𝑥𝐶)) → 𝑥 = 𝑤))
25 nfcsb1v 2966 . . . . . . 7 𝑥𝑤 / 𝑥𝐶
2614, 25nfxp 4480 . . . . . 6 𝑥(𝑤 / 𝑥𝐵 × 𝑤 / 𝑥𝐶)
2726nfel2 2242 . . . . 5 𝑥 𝑦 ∈ (𝑤 / 𝑥𝐵 × 𝑤 / 𝑥𝐶)
28 csbeq1a 2944 . . . . . . 7 (𝑥 = 𝑤𝐶 = 𝑤 / 𝑥𝐶)
2916, 28xpeq12d 4479 . . . . . 6 (𝑥 = 𝑤 → (𝐵 × 𝐶) = (𝑤 / 𝑥𝐵 × 𝑤 / 𝑥𝐶))
3029eleq2d 2158 . . . . 5 (𝑥 = 𝑤 → (𝑦 ∈ (𝐵 × 𝐶) ↔ 𝑦 ∈ (𝑤 / 𝑥𝐵 × 𝑤 / 𝑥𝐶)))
3112, 13, 27, 30rmo4f 2816 . . . 4 (∃*𝑥𝐴 𝑦 ∈ (𝐵 × 𝐶) ↔ ∀𝑥𝐴𝑤𝐴 ((𝑦 ∈ (𝐵 × 𝐶) ∧ 𝑦 ∈ (𝑤 / 𝑥𝐵 × 𝑤 / 𝑥𝐶)) → 𝑥 = 𝑤))
3224, 31sylibr 133 . . 3 (𝜑 → ∃*𝑥𝐴 𝑦 ∈ (𝐵 × 𝐶))
3332alrimiv 1803 . 2 (𝜑 → ∀𝑦∃*𝑥𝐴 𝑦 ∈ (𝐵 × 𝐶))
34 df-disj 3831 . 2 (Disj 𝑥𝐴 (𝐵 × 𝐶) ↔ ∀𝑦∃*𝑥𝐴 𝑦 ∈ (𝐵 × 𝐶))
3533, 34sylibr 133 1 (𝜑Disj 𝑥𝐴 (𝐵 × 𝐶))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wal 1288   = wceq 1290  wcel 1439  wral 2360  ∃*wrmo 2363  Vcvv 2622  csb 2936  Disj wdisj 3830   × cxp 4452  cfv 5030  1st c1st 5925
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-13 1450  ax-14 1451  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071  ax-sep 3965  ax-pow 4017  ax-pr 4047  ax-un 4271
This theorem depends on definitions:  df-bi 116  df-3an 927  df-tru 1293  df-nf 1396  df-sb 1694  df-eu 1952  df-mo 1953  df-clab 2076  df-cleq 2082  df-clel 2085  df-nfc 2218  df-ral 2365  df-rex 2366  df-rmo 2368  df-v 2624  df-sbc 2844  df-csb 2937  df-un 3006  df-in 3008  df-ss 3015  df-pw 3437  df-sn 3458  df-pr 3459  df-op 3461  df-uni 3662  df-disj 3831  df-br 3854  df-opab 3908  df-mpt 3909  df-id 4131  df-xp 4460  df-rel 4461  df-cnv 4462  df-co 4463  df-dm 4464  df-rn 4465  df-iota 4995  df-fun 5032  df-fn 5033  df-f 5034  df-fo 5036  df-fv 5038  df-1st 5927
This theorem is referenced by:  disjsnxp  6018
  Copyright terms: Public domain W3C validator