ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  syland GIF version

Theorem syland 291
Description: A syllogism deduction. (Contributed by NM, 15-Dec-2004.)
Hypotheses
Ref Expression
syland.1 (𝜑 → (𝜓𝜒))
syland.2 (𝜑 → ((𝜒𝜃) → 𝜏))
Assertion
Ref Expression
syland (𝜑 → ((𝜓𝜃) → 𝜏))

Proof of Theorem syland
StepHypRef Expression
1 syland.1 . . 3 (𝜑 → (𝜓𝜒))
2 syland.2 . . . 4 (𝜑 → ((𝜒𝜃) → 𝜏))
32expd 256 . . 3 (𝜑 → (𝜒 → (𝜃𝜏)))
41, 3syld 45 . 2 (𝜑 → (𝜓 → (𝜃𝜏)))
54impd 252 1 (𝜑 → ((𝜓𝜃) → 𝜏))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107
This theorem is referenced by:  sylan2d  292  syl2and  293  sylani  404  nn0seqcvgd  11995
  Copyright terms: Public domain W3C validator