| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sylan2d | GIF version | ||
| Description: A syllogism deduction. (Contributed by NM, 15-Dec-2004.) |
| Ref | Expression |
|---|---|
| sylan2d.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| sylan2d.2 | ⊢ (𝜑 → ((𝜃 ∧ 𝜒) → 𝜏)) |
| Ref | Expression |
|---|---|
| sylan2d | ⊢ (𝜑 → ((𝜃 ∧ 𝜓) → 𝜏)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylan2d.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | sylan2d.2 | . . . 4 ⊢ (𝜑 → ((𝜃 ∧ 𝜒) → 𝜏)) | |
| 3 | 2 | ancomsd 269 | . . 3 ⊢ (𝜑 → ((𝜒 ∧ 𝜃) → 𝜏)) |
| 4 | 1, 3 | syland 293 | . 2 ⊢ (𝜑 → ((𝜓 ∧ 𝜃) → 𝜏)) |
| 5 | 4 | ancomsd 269 | 1 ⊢ (𝜑 → ((𝜃 ∧ 𝜓) → 𝜏)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: syl2and 295 sylan2i 407 swopo 4342 prarloclemlo 7578 prodgt02 8897 prodge02 8899 infpnlem1 12553 |
| Copyright terms: Public domain | W3C validator |