| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > syl2and | GIF version | ||
| Description: A syllogism deduction. (Contributed by NM, 15-Dec-2004.) | 
| Ref | Expression | 
|---|---|
| syl2and.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) | 
| syl2and.2 | ⊢ (𝜑 → (𝜃 → 𝜏)) | 
| syl2and.3 | ⊢ (𝜑 → ((𝜒 ∧ 𝜏) → 𝜂)) | 
| Ref | Expression | 
|---|---|
| syl2and | ⊢ (𝜑 → ((𝜓 ∧ 𝜃) → 𝜂)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | syl2and.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | syl2and.2 | . . 3 ⊢ (𝜑 → (𝜃 → 𝜏)) | |
| 3 | syl2and.3 | . . 3 ⊢ (𝜑 → ((𝜒 ∧ 𝜏) → 𝜂)) | |
| 4 | 2, 3 | sylan2d 294 | . 2 ⊢ (𝜑 → ((𝜒 ∧ 𝜃) → 𝜂)) | 
| 5 | 1, 4 | syland 293 | 1 ⊢ (𝜑 → ((𝜓 ∧ 𝜃) → 𝜂)) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ wa 104 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 | 
| This theorem depends on definitions: df-bi 117 | 
| This theorem is referenced by: anim12d 335 recexprlem1ssl 7700 recexprlem1ssu 7701 xle2add 9954 fzen 10118 bezoutlembi 12172 rpmulgcd2 12263 pcqmul 12472 mpodvdsmulf1o 15226 2sqlem8a 15363 | 
| Copyright terms: Public domain | W3C validator |