ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nn0seqcvgd GIF version

Theorem nn0seqcvgd 12234
Description: A strictly-decreasing nonnegative integer sequence with initial term 𝑁 reaches zero by the 𝑁 th term. Deduction version. (Contributed by Paul Chapman, 31-Mar-2011.)
Hypotheses
Ref Expression
nn0seqcvgd.1 (𝜑𝐹:ℕ0⟶ℕ0)
nn0seqcvgd.2 (𝜑𝑁 = (𝐹‘0))
nn0seqcvgd.3 ((𝜑𝑘 ∈ ℕ0) → ((𝐹‘(𝑘 + 1)) ≠ 0 → (𝐹‘(𝑘 + 1)) < (𝐹𝑘)))
Assertion
Ref Expression
nn0seqcvgd (𝜑 → (𝐹𝑁) = 0)
Distinct variable groups:   𝑘,𝐹   𝑘,𝑁   𝜑,𝑘

Proof of Theorem nn0seqcvgd
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 nn0seqcvgd.2 . . . . . 6 (𝜑𝑁 = (𝐹‘0))
2 nn0seqcvgd.1 . . . . . . 7 (𝜑𝐹:ℕ0⟶ℕ0)
3 0nn0 9281 . . . . . . 7 0 ∈ ℕ0
4 ffvelcdm 5698 . . . . . . 7 ((𝐹:ℕ0⟶ℕ0 ∧ 0 ∈ ℕ0) → (𝐹‘0) ∈ ℕ0)
52, 3, 4sylancl 413 . . . . . 6 (𝜑 → (𝐹‘0) ∈ ℕ0)
61, 5eqeltrd 2273 . . . . 5 (𝜑𝑁 ∈ ℕ0)
76nn0red 9320 . . . . . 6 (𝜑𝑁 ∈ ℝ)
87leidd 8558 . . . . 5 (𝜑𝑁𝑁)
9 fveq2 5561 . . . . . . . 8 (𝑚 = 0 → (𝐹𝑚) = (𝐹‘0))
10 oveq2 5933 . . . . . . . 8 (𝑚 = 0 → (𝑁𝑚) = (𝑁 − 0))
119, 10breq12d 4047 . . . . . . 7 (𝑚 = 0 → ((𝐹𝑚) ≤ (𝑁𝑚) ↔ (𝐹‘0) ≤ (𝑁 − 0)))
1211imbi2d 230 . . . . . 6 (𝑚 = 0 → ((𝜑 → (𝐹𝑚) ≤ (𝑁𝑚)) ↔ (𝜑 → (𝐹‘0) ≤ (𝑁 − 0))))
13 fveq2 5561 . . . . . . . 8 (𝑚 = 𝑘 → (𝐹𝑚) = (𝐹𝑘))
14 oveq2 5933 . . . . . . . 8 (𝑚 = 𝑘 → (𝑁𝑚) = (𝑁𝑘))
1513, 14breq12d 4047 . . . . . . 7 (𝑚 = 𝑘 → ((𝐹𝑚) ≤ (𝑁𝑚) ↔ (𝐹𝑘) ≤ (𝑁𝑘)))
1615imbi2d 230 . . . . . 6 (𝑚 = 𝑘 → ((𝜑 → (𝐹𝑚) ≤ (𝑁𝑚)) ↔ (𝜑 → (𝐹𝑘) ≤ (𝑁𝑘))))
17 fveq2 5561 . . . . . . . 8 (𝑚 = (𝑘 + 1) → (𝐹𝑚) = (𝐹‘(𝑘 + 1)))
18 oveq2 5933 . . . . . . . 8 (𝑚 = (𝑘 + 1) → (𝑁𝑚) = (𝑁 − (𝑘 + 1)))
1917, 18breq12d 4047 . . . . . . 7 (𝑚 = (𝑘 + 1) → ((𝐹𝑚) ≤ (𝑁𝑚) ↔ (𝐹‘(𝑘 + 1)) ≤ (𝑁 − (𝑘 + 1))))
2019imbi2d 230 . . . . . 6 (𝑚 = (𝑘 + 1) → ((𝜑 → (𝐹𝑚) ≤ (𝑁𝑚)) ↔ (𝜑 → (𝐹‘(𝑘 + 1)) ≤ (𝑁 − (𝑘 + 1)))))
21 fveq2 5561 . . . . . . . 8 (𝑚 = 𝑁 → (𝐹𝑚) = (𝐹𝑁))
22 oveq2 5933 . . . . . . . 8 (𝑚 = 𝑁 → (𝑁𝑚) = (𝑁𝑁))
2321, 22breq12d 4047 . . . . . . 7 (𝑚 = 𝑁 → ((𝐹𝑚) ≤ (𝑁𝑚) ↔ (𝐹𝑁) ≤ (𝑁𝑁)))
2423imbi2d 230 . . . . . 6 (𝑚 = 𝑁 → ((𝜑 → (𝐹𝑚) ≤ (𝑁𝑚)) ↔ (𝜑 → (𝐹𝑁) ≤ (𝑁𝑁))))
251, 8eqbrtrrd 4058 . . . . . . . 8 (𝜑 → (𝐹‘0) ≤ 𝑁)
267recnd 8072 . . . . . . . . 9 (𝜑𝑁 ∈ ℂ)
2726subid1d 8343 . . . . . . . 8 (𝜑 → (𝑁 − 0) = 𝑁)
2825, 27breqtrrd 4062 . . . . . . 7 (𝜑 → (𝐹‘0) ≤ (𝑁 − 0))
2928a1i 9 . . . . . 6 (𝑁 ∈ ℕ0 → (𝜑 → (𝐹‘0) ≤ (𝑁 − 0)))
30 nn0re 9275 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ ℕ0𝑘 ∈ ℝ)
31 posdif 8499 . . . . . . . . . . . . . . . . 17 ((𝑘 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝑘 < 𝑁 ↔ 0 < (𝑁𝑘)))
3230, 7, 31syl2anr 290 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ ℕ0) → (𝑘 < 𝑁 ↔ 0 < (𝑁𝑘)))
3332adantr 276 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ ℕ0) ∧ (𝐹‘(𝑘 + 1)) = 0) → (𝑘 < 𝑁 ↔ 0 < (𝑁𝑘)))
34 breq1 4037 . . . . . . . . . . . . . . . 16 ((𝐹‘(𝑘 + 1)) = 0 → ((𝐹‘(𝑘 + 1)) < (𝑁𝑘) ↔ 0 < (𝑁𝑘)))
3534adantl 277 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ ℕ0) ∧ (𝐹‘(𝑘 + 1)) = 0) → ((𝐹‘(𝑘 + 1)) < (𝑁𝑘) ↔ 0 < (𝑁𝑘)))
36 peano2nn0 9306 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∈ ℕ0 → (𝑘 + 1) ∈ ℕ0)
37 ffvelcdm 5698 . . . . . . . . . . . . . . . . . . . 20 ((𝐹:ℕ0⟶ℕ0 ∧ (𝑘 + 1) ∈ ℕ0) → (𝐹‘(𝑘 + 1)) ∈ ℕ0)
382, 36, 37syl2an 289 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑘 ∈ ℕ0) → (𝐹‘(𝑘 + 1)) ∈ ℕ0)
3938nn0zd 9463 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘 ∈ ℕ0) → (𝐹‘(𝑘 + 1)) ∈ ℤ)
406nn0zd 9463 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑁 ∈ ℤ)
41 nn0z 9363 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ ℕ0𝑘 ∈ ℤ)
42 zsubcl 9384 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (𝑁𝑘) ∈ ℤ)
4340, 41, 42syl2an 289 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘 ∈ ℕ0) → (𝑁𝑘) ∈ ℤ)
44 zltlem1 9400 . . . . . . . . . . . . . . . . . 18 (((𝐹‘(𝑘 + 1)) ∈ ℤ ∧ (𝑁𝑘) ∈ ℤ) → ((𝐹‘(𝑘 + 1)) < (𝑁𝑘) ↔ (𝐹‘(𝑘 + 1)) ≤ ((𝑁𝑘) − 1)))
4539, 43, 44syl2anc 411 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘 ∈ ℕ0) → ((𝐹‘(𝑘 + 1)) < (𝑁𝑘) ↔ (𝐹‘(𝑘 + 1)) ≤ ((𝑁𝑘) − 1)))
46 nn0cn 9276 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ ℕ0𝑘 ∈ ℂ)
47 ax-1cn 7989 . . . . . . . . . . . . . . . . . . . 20 1 ∈ ℂ
48 subsub4 8276 . . . . . . . . . . . . . . . . . . . 20 ((𝑁 ∈ ℂ ∧ 𝑘 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑁𝑘) − 1) = (𝑁 − (𝑘 + 1)))
4947, 48mp3an3 1337 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ ℂ ∧ 𝑘 ∈ ℂ) → ((𝑁𝑘) − 1) = (𝑁 − (𝑘 + 1)))
5026, 46, 49syl2an 289 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘 ∈ ℕ0) → ((𝑁𝑘) − 1) = (𝑁 − (𝑘 + 1)))
5150breq2d 4046 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘 ∈ ℕ0) → ((𝐹‘(𝑘 + 1)) ≤ ((𝑁𝑘) − 1) ↔ (𝐹‘(𝑘 + 1)) ≤ (𝑁 − (𝑘 + 1))))
5245, 51bitrd 188 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ ℕ0) → ((𝐹‘(𝑘 + 1)) < (𝑁𝑘) ↔ (𝐹‘(𝑘 + 1)) ≤ (𝑁 − (𝑘 + 1))))
5352adantr 276 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ ℕ0) ∧ (𝐹‘(𝑘 + 1)) = 0) → ((𝐹‘(𝑘 + 1)) < (𝑁𝑘) ↔ (𝐹‘(𝑘 + 1)) ≤ (𝑁 − (𝑘 + 1))))
5433, 35, 533bitr2d 216 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ ℕ0) ∧ (𝐹‘(𝑘 + 1)) = 0) → (𝑘 < 𝑁 ↔ (𝐹‘(𝑘 + 1)) ≤ (𝑁 − (𝑘 + 1))))
5554biimpa 296 . . . . . . . . . . . . 13 ((((𝜑𝑘 ∈ ℕ0) ∧ (𝐹‘(𝑘 + 1)) = 0) ∧ 𝑘 < 𝑁) → (𝐹‘(𝑘 + 1)) ≤ (𝑁 − (𝑘 + 1)))
5655an32s 568 . . . . . . . . . . . 12 ((((𝜑𝑘 ∈ ℕ0) ∧ 𝑘 < 𝑁) ∧ (𝐹‘(𝑘 + 1)) = 0) → (𝐹‘(𝑘 + 1)) ≤ (𝑁 − (𝑘 + 1)))
5756a1d 22 . . . . . . . . . . 11 ((((𝜑𝑘 ∈ ℕ0) ∧ 𝑘 < 𝑁) ∧ (𝐹‘(𝑘 + 1)) = 0) → ((𝐹𝑘) ≤ (𝑁𝑘) → (𝐹‘(𝑘 + 1)) ≤ (𝑁 − (𝑘 + 1))))
58 nn0seqcvgd.3 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ℕ0) → ((𝐹‘(𝑘 + 1)) ≠ 0 → (𝐹‘(𝑘 + 1)) < (𝐹𝑘)))
5938nn0red 9320 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ ℕ0) → (𝐹‘(𝑘 + 1)) ∈ ℝ)
602ffvelcdmda 5700 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘 ∈ ℕ0) → (𝐹𝑘) ∈ ℕ0)
6160nn0red 9320 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ ℕ0) → (𝐹𝑘) ∈ ℝ)
6243zred 9465 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ ℕ0) → (𝑁𝑘) ∈ ℝ)
63 ltletr 8133 . . . . . . . . . . . . . . . 16 (((𝐹‘(𝑘 + 1)) ∈ ℝ ∧ (𝐹𝑘) ∈ ℝ ∧ (𝑁𝑘) ∈ ℝ) → (((𝐹‘(𝑘 + 1)) < (𝐹𝑘) ∧ (𝐹𝑘) ≤ (𝑁𝑘)) → (𝐹‘(𝑘 + 1)) < (𝑁𝑘)))
6459, 61, 62, 63syl3anc 1249 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ ℕ0) → (((𝐹‘(𝑘 + 1)) < (𝐹𝑘) ∧ (𝐹𝑘) ≤ (𝑁𝑘)) → (𝐹‘(𝑘 + 1)) < (𝑁𝑘)))
6564, 52sylibd 149 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ℕ0) → (((𝐹‘(𝑘 + 1)) < (𝐹𝑘) ∧ (𝐹𝑘) ≤ (𝑁𝑘)) → (𝐹‘(𝑘 + 1)) ≤ (𝑁 − (𝑘 + 1))))
6658, 65syland 293 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ0) → (((𝐹‘(𝑘 + 1)) ≠ 0 ∧ (𝐹𝑘) ≤ (𝑁𝑘)) → (𝐹‘(𝑘 + 1)) ≤ (𝑁 − (𝑘 + 1))))
6766adantr 276 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑘 < 𝑁) → (((𝐹‘(𝑘 + 1)) ≠ 0 ∧ (𝐹𝑘) ≤ (𝑁𝑘)) → (𝐹‘(𝑘 + 1)) ≤ (𝑁 − (𝑘 + 1))))
6867expdimp 259 . . . . . . . . . . 11 ((((𝜑𝑘 ∈ ℕ0) ∧ 𝑘 < 𝑁) ∧ (𝐹‘(𝑘 + 1)) ≠ 0) → ((𝐹𝑘) ≤ (𝑁𝑘) → (𝐹‘(𝑘 + 1)) ≤ (𝑁 − (𝑘 + 1))))
6939adantr 276 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑘 < 𝑁) → (𝐹‘(𝑘 + 1)) ∈ ℤ)
70 0zd 9355 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑘 < 𝑁) → 0 ∈ ℤ)
71 zdceq 9418 . . . . . . . . . . . . 13 (((𝐹‘(𝑘 + 1)) ∈ ℤ ∧ 0 ∈ ℤ) → DECID (𝐹‘(𝑘 + 1)) = 0)
7269, 70, 71syl2anc 411 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑘 < 𝑁) → DECID (𝐹‘(𝑘 + 1)) = 0)
73 dcne 2378 . . . . . . . . . . . 12 (DECID (𝐹‘(𝑘 + 1)) = 0 ↔ ((𝐹‘(𝑘 + 1)) = 0 ∨ (𝐹‘(𝑘 + 1)) ≠ 0))
7472, 73sylib 122 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑘 < 𝑁) → ((𝐹‘(𝑘 + 1)) = 0 ∨ (𝐹‘(𝑘 + 1)) ≠ 0))
7557, 68, 74mpjaodan 799 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑘 < 𝑁) → ((𝐹𝑘) ≤ (𝑁𝑘) → (𝐹‘(𝑘 + 1)) ≤ (𝑁 − (𝑘 + 1))))
7675anasss 399 . . . . . . . . 9 ((𝜑 ∧ (𝑘 ∈ ℕ0𝑘 < 𝑁)) → ((𝐹𝑘) ≤ (𝑁𝑘) → (𝐹‘(𝑘 + 1)) ≤ (𝑁 − (𝑘 + 1))))
7776expcom 116 . . . . . . . 8 ((𝑘 ∈ ℕ0𝑘 < 𝑁) → (𝜑 → ((𝐹𝑘) ≤ (𝑁𝑘) → (𝐹‘(𝑘 + 1)) ≤ (𝑁 − (𝑘 + 1)))))
7877a2d 26 . . . . . . 7 ((𝑘 ∈ ℕ0𝑘 < 𝑁) → ((𝜑 → (𝐹𝑘) ≤ (𝑁𝑘)) → (𝜑 → (𝐹‘(𝑘 + 1)) ≤ (𝑁 − (𝑘 + 1)))))
79783adant1 1017 . . . . . 6 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0𝑘 < 𝑁) → ((𝜑 → (𝐹𝑘) ≤ (𝑁𝑘)) → (𝜑 → (𝐹‘(𝑘 + 1)) ≤ (𝑁 − (𝑘 + 1)))))
8012, 16, 20, 24, 29, 79fnn0ind 9459 . . . . 5 ((𝑁 ∈ ℕ0𝑁 ∈ ℕ0𝑁𝑁) → (𝜑 → (𝐹𝑁) ≤ (𝑁𝑁)))
816, 6, 8, 80syl3anc 1249 . . . 4 (𝜑 → (𝜑 → (𝐹𝑁) ≤ (𝑁𝑁)))
8281pm2.43i 49 . . 3 (𝜑 → (𝐹𝑁) ≤ (𝑁𝑁))
8326subidd 8342 . . 3 (𝜑 → (𝑁𝑁) = 0)
8482, 83breqtrd 4060 . 2 (𝜑 → (𝐹𝑁) ≤ 0)
852, 6ffvelcdmd 5701 . . 3 (𝜑 → (𝐹𝑁) ∈ ℕ0)
8685nn0ge0d 9322 . 2 (𝜑 → 0 ≤ (𝐹𝑁))
8785nn0red 9320 . . 3 (𝜑 → (𝐹𝑁) ∈ ℝ)
88 0re 8043 . . 3 0 ∈ ℝ
89 letri3 8124 . . 3 (((𝐹𝑁) ∈ ℝ ∧ 0 ∈ ℝ) → ((𝐹𝑁) = 0 ↔ ((𝐹𝑁) ≤ 0 ∧ 0 ≤ (𝐹𝑁))))
9087, 88, 89sylancl 413 . 2 (𝜑 → ((𝐹𝑁) = 0 ↔ ((𝐹𝑁) ≤ 0 ∧ 0 ≤ (𝐹𝑁))))
9184, 86, 90mpbir2and 946 1 (𝜑 → (𝐹𝑁) = 0)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wo 709  DECID wdc 835   = wceq 1364  wcel 2167  wne 2367   class class class wbr 4034  wf 5255  cfv 5259  (class class class)co 5925  cc 7894  cr 7895  0cc0 7896  1c1 7897   + caddc 7899   < clt 8078  cle 8079  cmin 8214  0cn0 9266  cz 9343
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-addcom 7996  ax-addass 7998  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-0id 8004  ax-rnegex 8005  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-apti 8011  ax-pre-ltadd 8012
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-br 4035  df-opab 4096  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-inn 9008  df-n0 9267  df-z 9344
This theorem is referenced by:  algcvg  12241
  Copyright terms: Public domain W3C validator