| Step | Hyp | Ref
| Expression |
| 1 | | nn0seqcvgd.2 |
. . . . . 6
⊢ (𝜑 → 𝑁 = (𝐹‘0)) |
| 2 | | nn0seqcvgd.1 |
. . . . . . 7
⊢ (𝜑 → 𝐹:ℕ0⟶ℕ0) |
| 3 | | 0nn0 9264 |
. . . . . . 7
⊢ 0 ∈
ℕ0 |
| 4 | | ffvelcdm 5695 |
. . . . . . 7
⊢ ((𝐹:ℕ0⟶ℕ0
∧ 0 ∈ ℕ0) → (𝐹‘0) ∈
ℕ0) |
| 5 | 2, 3, 4 | sylancl 413 |
. . . . . 6
⊢ (𝜑 → (𝐹‘0) ∈
ℕ0) |
| 6 | 1, 5 | eqeltrd 2273 |
. . . . 5
⊢ (𝜑 → 𝑁 ∈
ℕ0) |
| 7 | 6 | nn0red 9303 |
. . . . . 6
⊢ (𝜑 → 𝑁 ∈ ℝ) |
| 8 | 7 | leidd 8541 |
. . . . 5
⊢ (𝜑 → 𝑁 ≤ 𝑁) |
| 9 | | fveq2 5558 |
. . . . . . . 8
⊢ (𝑚 = 0 → (𝐹‘𝑚) = (𝐹‘0)) |
| 10 | | oveq2 5930 |
. . . . . . . 8
⊢ (𝑚 = 0 → (𝑁 − 𝑚) = (𝑁 − 0)) |
| 11 | 9, 10 | breq12d 4046 |
. . . . . . 7
⊢ (𝑚 = 0 → ((𝐹‘𝑚) ≤ (𝑁 − 𝑚) ↔ (𝐹‘0) ≤ (𝑁 − 0))) |
| 12 | 11 | imbi2d 230 |
. . . . . 6
⊢ (𝑚 = 0 → ((𝜑 → (𝐹‘𝑚) ≤ (𝑁 − 𝑚)) ↔ (𝜑 → (𝐹‘0) ≤ (𝑁 − 0)))) |
| 13 | | fveq2 5558 |
. . . . . . . 8
⊢ (𝑚 = 𝑘 → (𝐹‘𝑚) = (𝐹‘𝑘)) |
| 14 | | oveq2 5930 |
. . . . . . . 8
⊢ (𝑚 = 𝑘 → (𝑁 − 𝑚) = (𝑁 − 𝑘)) |
| 15 | 13, 14 | breq12d 4046 |
. . . . . . 7
⊢ (𝑚 = 𝑘 → ((𝐹‘𝑚) ≤ (𝑁 − 𝑚) ↔ (𝐹‘𝑘) ≤ (𝑁 − 𝑘))) |
| 16 | 15 | imbi2d 230 |
. . . . . 6
⊢ (𝑚 = 𝑘 → ((𝜑 → (𝐹‘𝑚) ≤ (𝑁 − 𝑚)) ↔ (𝜑 → (𝐹‘𝑘) ≤ (𝑁 − 𝑘)))) |
| 17 | | fveq2 5558 |
. . . . . . . 8
⊢ (𝑚 = (𝑘 + 1) → (𝐹‘𝑚) = (𝐹‘(𝑘 + 1))) |
| 18 | | oveq2 5930 |
. . . . . . . 8
⊢ (𝑚 = (𝑘 + 1) → (𝑁 − 𝑚) = (𝑁 − (𝑘 + 1))) |
| 19 | 17, 18 | breq12d 4046 |
. . . . . . 7
⊢ (𝑚 = (𝑘 + 1) → ((𝐹‘𝑚) ≤ (𝑁 − 𝑚) ↔ (𝐹‘(𝑘 + 1)) ≤ (𝑁 − (𝑘 + 1)))) |
| 20 | 19 | imbi2d 230 |
. . . . . 6
⊢ (𝑚 = (𝑘 + 1) → ((𝜑 → (𝐹‘𝑚) ≤ (𝑁 − 𝑚)) ↔ (𝜑 → (𝐹‘(𝑘 + 1)) ≤ (𝑁 − (𝑘 + 1))))) |
| 21 | | fveq2 5558 |
. . . . . . . 8
⊢ (𝑚 = 𝑁 → (𝐹‘𝑚) = (𝐹‘𝑁)) |
| 22 | | oveq2 5930 |
. . . . . . . 8
⊢ (𝑚 = 𝑁 → (𝑁 − 𝑚) = (𝑁 − 𝑁)) |
| 23 | 21, 22 | breq12d 4046 |
. . . . . . 7
⊢ (𝑚 = 𝑁 → ((𝐹‘𝑚) ≤ (𝑁 − 𝑚) ↔ (𝐹‘𝑁) ≤ (𝑁 − 𝑁))) |
| 24 | 23 | imbi2d 230 |
. . . . . 6
⊢ (𝑚 = 𝑁 → ((𝜑 → (𝐹‘𝑚) ≤ (𝑁 − 𝑚)) ↔ (𝜑 → (𝐹‘𝑁) ≤ (𝑁 − 𝑁)))) |
| 25 | 1, 8 | eqbrtrrd 4057 |
. . . . . . . 8
⊢ (𝜑 → (𝐹‘0) ≤ 𝑁) |
| 26 | 7 | recnd 8055 |
. . . . . . . . 9
⊢ (𝜑 → 𝑁 ∈ ℂ) |
| 27 | 26 | subid1d 8326 |
. . . . . . . 8
⊢ (𝜑 → (𝑁 − 0) = 𝑁) |
| 28 | 25, 27 | breqtrrd 4061 |
. . . . . . 7
⊢ (𝜑 → (𝐹‘0) ≤ (𝑁 − 0)) |
| 29 | 28 | a1i 9 |
. . . . . 6
⊢ (𝑁 ∈ ℕ0
→ (𝜑 → (𝐹‘0) ≤ (𝑁 − 0))) |
| 30 | | nn0re 9258 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 ∈ ℕ0
→ 𝑘 ∈
ℝ) |
| 31 | | posdif 8482 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑘 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝑘 < 𝑁 ↔ 0 < (𝑁 − 𝑘))) |
| 32 | 30, 7, 31 | syl2anr 290 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝑘 < 𝑁 ↔ 0 < (𝑁 − 𝑘))) |
| 33 | 32 | adantr 276 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ (𝐹‘(𝑘 + 1)) = 0) → (𝑘 < 𝑁 ↔ 0 < (𝑁 − 𝑘))) |
| 34 | | breq1 4036 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐹‘(𝑘 + 1)) = 0 → ((𝐹‘(𝑘 + 1)) < (𝑁 − 𝑘) ↔ 0 < (𝑁 − 𝑘))) |
| 35 | 34 | adantl 277 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ (𝐹‘(𝑘 + 1)) = 0) → ((𝐹‘(𝑘 + 1)) < (𝑁 − 𝑘) ↔ 0 < (𝑁 − 𝑘))) |
| 36 | | peano2nn0 9289 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑘 ∈ ℕ0
→ (𝑘 + 1) ∈
ℕ0) |
| 37 | | ffvelcdm 5695 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐹:ℕ0⟶ℕ0
∧ (𝑘 + 1) ∈
ℕ0) → (𝐹‘(𝑘 + 1)) ∈
ℕ0) |
| 38 | 2, 36, 37 | syl2an 289 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝐹‘(𝑘 + 1)) ∈
ℕ0) |
| 39 | 38 | nn0zd 9446 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝐹‘(𝑘 + 1)) ∈ ℤ) |
| 40 | 6 | nn0zd 9446 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 𝑁 ∈ ℤ) |
| 41 | | nn0z 9346 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑘 ∈ ℕ0
→ 𝑘 ∈
ℤ) |
| 42 | | zsubcl 9367 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑁 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (𝑁 − 𝑘) ∈ ℤ) |
| 43 | 40, 41, 42 | syl2an 289 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝑁 − 𝑘) ∈ ℤ) |
| 44 | | zltlem1 9383 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐹‘(𝑘 + 1)) ∈ ℤ ∧ (𝑁 − 𝑘) ∈ ℤ) → ((𝐹‘(𝑘 + 1)) < (𝑁 − 𝑘) ↔ (𝐹‘(𝑘 + 1)) ≤ ((𝑁 − 𝑘) − 1))) |
| 45 | 39, 43, 44 | syl2anc 411 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → ((𝐹‘(𝑘 + 1)) < (𝑁 − 𝑘) ↔ (𝐹‘(𝑘 + 1)) ≤ ((𝑁 − 𝑘) − 1))) |
| 46 | | nn0cn 9259 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑘 ∈ ℕ0
→ 𝑘 ∈
ℂ) |
| 47 | | ax-1cn 7972 |
. . . . . . . . . . . . . . . . . . . 20
⊢ 1 ∈
ℂ |
| 48 | | subsub4 8259 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑁 ∈ ℂ ∧ 𝑘 ∈ ℂ ∧ 1 ∈
ℂ) → ((𝑁 −
𝑘) − 1) = (𝑁 − (𝑘 + 1))) |
| 49 | 47, 48 | mp3an3 1337 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑁 ∈ ℂ ∧ 𝑘 ∈ ℂ) → ((𝑁 − 𝑘) − 1) = (𝑁 − (𝑘 + 1))) |
| 50 | 26, 46, 49 | syl2an 289 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → ((𝑁 − 𝑘) − 1) = (𝑁 − (𝑘 + 1))) |
| 51 | 50 | breq2d 4045 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → ((𝐹‘(𝑘 + 1)) ≤ ((𝑁 − 𝑘) − 1) ↔ (𝐹‘(𝑘 + 1)) ≤ (𝑁 − (𝑘 + 1)))) |
| 52 | 45, 51 | bitrd 188 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → ((𝐹‘(𝑘 + 1)) < (𝑁 − 𝑘) ↔ (𝐹‘(𝑘 + 1)) ≤ (𝑁 − (𝑘 + 1)))) |
| 53 | 52 | adantr 276 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ (𝐹‘(𝑘 + 1)) = 0) → ((𝐹‘(𝑘 + 1)) < (𝑁 − 𝑘) ↔ (𝐹‘(𝑘 + 1)) ≤ (𝑁 − (𝑘 + 1)))) |
| 54 | 33, 35, 53 | 3bitr2d 216 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ (𝐹‘(𝑘 + 1)) = 0) → (𝑘 < 𝑁 ↔ (𝐹‘(𝑘 + 1)) ≤ (𝑁 − (𝑘 + 1)))) |
| 55 | 54 | biimpa 296 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ (𝐹‘(𝑘 + 1)) = 0) ∧ 𝑘 < 𝑁) → (𝐹‘(𝑘 + 1)) ≤ (𝑁 − (𝑘 + 1))) |
| 56 | 55 | an32s 568 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ 𝑘 < 𝑁) ∧ (𝐹‘(𝑘 + 1)) = 0) → (𝐹‘(𝑘 + 1)) ≤ (𝑁 − (𝑘 + 1))) |
| 57 | 56 | a1d 22 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ 𝑘 < 𝑁) ∧ (𝐹‘(𝑘 + 1)) = 0) → ((𝐹‘𝑘) ≤ (𝑁 − 𝑘) → (𝐹‘(𝑘 + 1)) ≤ (𝑁 − (𝑘 + 1)))) |
| 58 | | nn0seqcvgd.3 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → ((𝐹‘(𝑘 + 1)) ≠ 0 → (𝐹‘(𝑘 + 1)) < (𝐹‘𝑘))) |
| 59 | 38 | nn0red 9303 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝐹‘(𝑘 + 1)) ∈ ℝ) |
| 60 | 2 | ffvelcdmda 5697 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝐹‘𝑘) ∈
ℕ0) |
| 61 | 60 | nn0red 9303 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝐹‘𝑘) ∈ ℝ) |
| 62 | 43 | zred 9448 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝑁 − 𝑘) ∈ ℝ) |
| 63 | | ltletr 8116 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐹‘(𝑘 + 1)) ∈ ℝ ∧ (𝐹‘𝑘) ∈ ℝ ∧ (𝑁 − 𝑘) ∈ ℝ) → (((𝐹‘(𝑘 + 1)) < (𝐹‘𝑘) ∧ (𝐹‘𝑘) ≤ (𝑁 − 𝑘)) → (𝐹‘(𝑘 + 1)) < (𝑁 − 𝑘))) |
| 64 | 59, 61, 62, 63 | syl3anc 1249 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (((𝐹‘(𝑘 + 1)) < (𝐹‘𝑘) ∧ (𝐹‘𝑘) ≤ (𝑁 − 𝑘)) → (𝐹‘(𝑘 + 1)) < (𝑁 − 𝑘))) |
| 65 | 64, 52 | sylibd 149 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (((𝐹‘(𝑘 + 1)) < (𝐹‘𝑘) ∧ (𝐹‘𝑘) ≤ (𝑁 − 𝑘)) → (𝐹‘(𝑘 + 1)) ≤ (𝑁 − (𝑘 + 1)))) |
| 66 | 58, 65 | syland 293 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (((𝐹‘(𝑘 + 1)) ≠ 0 ∧ (𝐹‘𝑘) ≤ (𝑁 − 𝑘)) → (𝐹‘(𝑘 + 1)) ≤ (𝑁 − (𝑘 + 1)))) |
| 67 | 66 | adantr 276 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ 𝑘 < 𝑁) → (((𝐹‘(𝑘 + 1)) ≠ 0 ∧ (𝐹‘𝑘) ≤ (𝑁 − 𝑘)) → (𝐹‘(𝑘 + 1)) ≤ (𝑁 − (𝑘 + 1)))) |
| 68 | 67 | expdimp 259 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ 𝑘 < 𝑁) ∧ (𝐹‘(𝑘 + 1)) ≠ 0) → ((𝐹‘𝑘) ≤ (𝑁 − 𝑘) → (𝐹‘(𝑘 + 1)) ≤ (𝑁 − (𝑘 + 1)))) |
| 69 | 39 | adantr 276 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ 𝑘 < 𝑁) → (𝐹‘(𝑘 + 1)) ∈ ℤ) |
| 70 | | 0zd 9338 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ 𝑘 < 𝑁) → 0 ∈ ℤ) |
| 71 | | zdceq 9401 |
. . . . . . . . . . . . 13
⊢ (((𝐹‘(𝑘 + 1)) ∈ ℤ ∧ 0 ∈ ℤ)
→ DECID (𝐹‘(𝑘 + 1)) = 0) |
| 72 | 69, 70, 71 | syl2anc 411 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ 𝑘 < 𝑁) → DECID (𝐹‘(𝑘 + 1)) = 0) |
| 73 | | dcne 2378 |
. . . . . . . . . . . 12
⊢
(DECID (𝐹‘(𝑘 + 1)) = 0 ↔ ((𝐹‘(𝑘 + 1)) = 0 ∨ (𝐹‘(𝑘 + 1)) ≠ 0)) |
| 74 | 72, 73 | sylib 122 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ 𝑘 < 𝑁) → ((𝐹‘(𝑘 + 1)) = 0 ∨ (𝐹‘(𝑘 + 1)) ≠ 0)) |
| 75 | 57, 68, 74 | mpjaodan 799 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ 𝑘 < 𝑁) → ((𝐹‘𝑘) ≤ (𝑁 − 𝑘) → (𝐹‘(𝑘 + 1)) ≤ (𝑁 − (𝑘 + 1)))) |
| 76 | 75 | anasss 399 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑘 ∈ ℕ0 ∧ 𝑘 < 𝑁)) → ((𝐹‘𝑘) ≤ (𝑁 − 𝑘) → (𝐹‘(𝑘 + 1)) ≤ (𝑁 − (𝑘 + 1)))) |
| 77 | 76 | expcom 116 |
. . . . . . . 8
⊢ ((𝑘 ∈ ℕ0
∧ 𝑘 < 𝑁) → (𝜑 → ((𝐹‘𝑘) ≤ (𝑁 − 𝑘) → (𝐹‘(𝑘 + 1)) ≤ (𝑁 − (𝑘 + 1))))) |
| 78 | 77 | a2d 26 |
. . . . . . 7
⊢ ((𝑘 ∈ ℕ0
∧ 𝑘 < 𝑁) → ((𝜑 → (𝐹‘𝑘) ≤ (𝑁 − 𝑘)) → (𝜑 → (𝐹‘(𝑘 + 1)) ≤ (𝑁 − (𝑘 + 1))))) |
| 79 | 78 | 3adant1 1017 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ0
∧ 𝑘 ∈
ℕ0 ∧ 𝑘
< 𝑁) → ((𝜑 → (𝐹‘𝑘) ≤ (𝑁 − 𝑘)) → (𝜑 → (𝐹‘(𝑘 + 1)) ≤ (𝑁 − (𝑘 + 1))))) |
| 80 | 12, 16, 20, 24, 29, 79 | fnn0ind 9442 |
. . . . 5
⊢ ((𝑁 ∈ ℕ0
∧ 𝑁 ∈
ℕ0 ∧ 𝑁
≤ 𝑁) → (𝜑 → (𝐹‘𝑁) ≤ (𝑁 − 𝑁))) |
| 81 | 6, 6, 8, 80 | syl3anc 1249 |
. . . 4
⊢ (𝜑 → (𝜑 → (𝐹‘𝑁) ≤ (𝑁 − 𝑁))) |
| 82 | 81 | pm2.43i 49 |
. . 3
⊢ (𝜑 → (𝐹‘𝑁) ≤ (𝑁 − 𝑁)) |
| 83 | 26 | subidd 8325 |
. . 3
⊢ (𝜑 → (𝑁 − 𝑁) = 0) |
| 84 | 82, 83 | breqtrd 4059 |
. 2
⊢ (𝜑 → (𝐹‘𝑁) ≤ 0) |
| 85 | 2, 6 | ffvelcdmd 5698 |
. . 3
⊢ (𝜑 → (𝐹‘𝑁) ∈
ℕ0) |
| 86 | 85 | nn0ge0d 9305 |
. 2
⊢ (𝜑 → 0 ≤ (𝐹‘𝑁)) |
| 87 | 85 | nn0red 9303 |
. . 3
⊢ (𝜑 → (𝐹‘𝑁) ∈ ℝ) |
| 88 | | 0re 8026 |
. . 3
⊢ 0 ∈
ℝ |
| 89 | | letri3 8107 |
. . 3
⊢ (((𝐹‘𝑁) ∈ ℝ ∧ 0 ∈ ℝ)
→ ((𝐹‘𝑁) = 0 ↔ ((𝐹‘𝑁) ≤ 0 ∧ 0 ≤ (𝐹‘𝑁)))) |
| 90 | 87, 88, 89 | sylancl 413 |
. 2
⊢ (𝜑 → ((𝐹‘𝑁) = 0 ↔ ((𝐹‘𝑁) ≤ 0 ∧ 0 ≤ (𝐹‘𝑁)))) |
| 91 | 84, 86, 90 | mpbir2and 946 |
1
⊢ (𝜑 → (𝐹‘𝑁) = 0) |