| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > xorbi12i | GIF version | ||
| Description: Equality property for XOR. (Contributed by Mario Carneiro, 4-Sep-2016.) |
| Ref | Expression |
|---|---|
| xorbi12.1 | ⊢ (𝜑 ↔ 𝜓) |
| xorbi12.2 | ⊢ (𝜒 ↔ 𝜃) |
| Ref | Expression |
|---|---|
| xorbi12i | ⊢ ((𝜑 ⊻ 𝜒) ↔ (𝜓 ⊻ 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xorbi12.1 | . . . 4 ⊢ (𝜑 ↔ 𝜓) | |
| 2 | 1 | a1i 9 | . . 3 ⊢ (⊤ → (𝜑 ↔ 𝜓)) |
| 3 | xorbi12.2 | . . . 4 ⊢ (𝜒 ↔ 𝜃) | |
| 4 | 3 | a1i 9 | . . 3 ⊢ (⊤ → (𝜒 ↔ 𝜃)) |
| 5 | 2, 4 | xorbi12d 1393 | . 2 ⊢ (⊤ → ((𝜑 ⊻ 𝜒) ↔ (𝜓 ⊻ 𝜃))) |
| 6 | 5 | mptru 1373 | 1 ⊢ ((𝜑 ⊻ 𝜒) ↔ (𝜓 ⊻ 𝜃)) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 ⊤wtru 1365 ⊻ wxo 1386 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-xor 1387 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |