Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > xorbi12i | GIF version |
Description: Equality property for XOR. (Contributed by Mario Carneiro, 4-Sep-2016.) |
Ref | Expression |
---|---|
xorbi12.1 | ⊢ (𝜑 ↔ 𝜓) |
xorbi12.2 | ⊢ (𝜒 ↔ 𝜃) |
Ref | Expression |
---|---|
xorbi12i | ⊢ ((𝜑 ⊻ 𝜒) ↔ (𝜓 ⊻ 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xorbi12.1 | . . . 4 ⊢ (𝜑 ↔ 𝜓) | |
2 | 1 | a1i 9 | . . 3 ⊢ (⊤ → (𝜑 ↔ 𝜓)) |
3 | xorbi12.2 | . . . 4 ⊢ (𝜒 ↔ 𝜃) | |
4 | 3 | a1i 9 | . . 3 ⊢ (⊤ → (𝜒 ↔ 𝜃)) |
5 | 2, 4 | xorbi12d 1382 | . 2 ⊢ (⊤ → ((𝜑 ⊻ 𝜒) ↔ (𝜓 ⊻ 𝜃))) |
6 | 5 | mptru 1362 | 1 ⊢ ((𝜑 ⊻ 𝜒) ↔ (𝜓 ⊻ 𝜃)) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 105 ⊤wtru 1354 ⊻ wxo 1375 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-xor 1376 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |