ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xorbi12d GIF version

Theorem xorbi12d 1377
Description: Deduction joining two equivalences to form equivalence of exclusive-or. (Contributed by Jim Kingdon, 7-Oct-2018.)
Hypotheses
Ref Expression
xorbi12d.1 (𝜑 → (𝜓𝜒))
xorbi12d.2 (𝜑 → (𝜃𝜏))
Assertion
Ref Expression
xorbi12d (𝜑 → ((𝜓𝜃) ↔ (𝜒𝜏)))

Proof of Theorem xorbi12d
StepHypRef Expression
1 xorbi12d.1 . . 3 (𝜑 → (𝜓𝜒))
21xorbi1d 1376 . 2 (𝜑 → ((𝜓𝜃) ↔ (𝜒𝜃)))
3 xorbi12d.2 . . 3 (𝜑 → (𝜃𝜏))
43xorbi2d 1375 . 2 (𝜑 → ((𝜒𝜃) ↔ (𝜒𝜏)))
52, 4bitrd 187 1 (𝜑 → ((𝜓𝜃) ↔ (𝜒𝜏)))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104  wxo 1370
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704
This theorem depends on definitions:  df-bi 116  df-xor 1371
This theorem is referenced by:  xorbi12i  1378  anxordi  1395  rpnegap  9643
  Copyright terms: Public domain W3C validator