| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > xorbi12d | GIF version | ||
| Description: Deduction joining two equivalences to form equivalence of exclusive-or. (Contributed by Jim Kingdon, 7-Oct-2018.) |
| Ref | Expression |
|---|---|
| xorbi12d.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| xorbi12d.2 | ⊢ (𝜑 → (𝜃 ↔ 𝜏)) |
| Ref | Expression |
|---|---|
| xorbi12d | ⊢ (𝜑 → ((𝜓 ⊻ 𝜃) ↔ (𝜒 ⊻ 𝜏))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xorbi12d.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | 1 | xorbi1d 1392 | . 2 ⊢ (𝜑 → ((𝜓 ⊻ 𝜃) ↔ (𝜒 ⊻ 𝜃))) |
| 3 | xorbi12d.2 | . . 3 ⊢ (𝜑 → (𝜃 ↔ 𝜏)) | |
| 4 | 3 | xorbi2d 1391 | . 2 ⊢ (𝜑 → ((𝜒 ⊻ 𝜃) ↔ (𝜒 ⊻ 𝜏))) |
| 5 | 2, 4 | bitrd 188 | 1 ⊢ (𝜑 → ((𝜓 ⊻ 𝜃) ↔ (𝜒 ⊻ 𝜏))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ⊻ wxo 1386 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 |
| This theorem depends on definitions: df-bi 117 df-xor 1387 |
| This theorem is referenced by: xorbi12i 1394 anxordi 1411 rpnegap 9761 |
| Copyright terms: Public domain | W3C validator |