Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > xorbi12d | GIF version |
Description: Deduction joining two equivalences to form equivalence of exclusive-or. (Contributed by Jim Kingdon, 7-Oct-2018.) |
Ref | Expression |
---|---|
xorbi12d.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
xorbi12d.2 | ⊢ (𝜑 → (𝜃 ↔ 𝜏)) |
Ref | Expression |
---|---|
xorbi12d | ⊢ (𝜑 → ((𝜓 ⊻ 𝜃) ↔ (𝜒 ⊻ 𝜏))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xorbi12d.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | 1 | xorbi1d 1376 | . 2 ⊢ (𝜑 → ((𝜓 ⊻ 𝜃) ↔ (𝜒 ⊻ 𝜃))) |
3 | xorbi12d.2 | . . 3 ⊢ (𝜑 → (𝜃 ↔ 𝜏)) | |
4 | 3 | xorbi2d 1375 | . 2 ⊢ (𝜑 → ((𝜒 ⊻ 𝜃) ↔ (𝜒 ⊻ 𝜏))) |
5 | 2, 4 | bitrd 187 | 1 ⊢ (𝜑 → ((𝜓 ⊻ 𝜃) ↔ (𝜒 ⊻ 𝜏))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 ⊻ wxo 1370 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 |
This theorem depends on definitions: df-bi 116 df-xor 1371 |
This theorem is referenced by: xorbi12i 1378 anxordi 1395 rpnegap 9643 |
Copyright terms: Public domain | W3C validator |