Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > xorbin | GIF version |
Description: A consequence of exclusive or. In classical logic the converse also holds. (Contributed by Jim Kingdon, 8-Mar-2018.) |
Ref | Expression |
---|---|
xorbin | ⊢ ((𝜑 ⊻ 𝜓) → (𝜑 ↔ ¬ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-xor 1371 | . . 3 ⊢ ((𝜑 ⊻ 𝜓) ↔ ((𝜑 ∨ 𝜓) ∧ ¬ (𝜑 ∧ 𝜓))) | |
2 | imnan 685 | . . . . 5 ⊢ ((𝜑 → ¬ 𝜓) ↔ ¬ (𝜑 ∧ 𝜓)) | |
3 | 2 | biimpri 132 | . . . 4 ⊢ (¬ (𝜑 ∧ 𝜓) → (𝜑 → ¬ 𝜓)) |
4 | 3 | adantl 275 | . . 3 ⊢ (((𝜑 ∨ 𝜓) ∧ ¬ (𝜑 ∧ 𝜓)) → (𝜑 → ¬ 𝜓)) |
5 | 1, 4 | sylbi 120 | . 2 ⊢ ((𝜑 ⊻ 𝜓) → (𝜑 → ¬ 𝜓)) |
6 | pm2.53 717 | . . . . 5 ⊢ ((𝜓 ∨ 𝜑) → (¬ 𝜓 → 𝜑)) | |
7 | 6 | orcoms 725 | . . . 4 ⊢ ((𝜑 ∨ 𝜓) → (¬ 𝜓 → 𝜑)) |
8 | 7 | adantr 274 | . . 3 ⊢ (((𝜑 ∨ 𝜓) ∧ ¬ (𝜑 ∧ 𝜓)) → (¬ 𝜓 → 𝜑)) |
9 | 1, 8 | sylbi 120 | . 2 ⊢ ((𝜑 ⊻ 𝜓) → (¬ 𝜓 → 𝜑)) |
10 | 5, 9 | impbid 128 | 1 ⊢ ((𝜑 ⊻ 𝜓) → (𝜑 ↔ ¬ 𝜓)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 103 ↔ wb 104 ∨ wo 703 ⊻ wxo 1370 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 |
This theorem depends on definitions: df-bi 116 df-xor 1371 |
This theorem is referenced by: xornbi 1381 zeo4 11829 odd2np1 11832 |
Copyright terms: Public domain | W3C validator |