| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > xorbin | GIF version | ||
| Description: A consequence of exclusive or. In classical logic the converse also holds. (Contributed by Jim Kingdon, 8-Mar-2018.) |
| Ref | Expression |
|---|---|
| xorbin | ⊢ ((𝜑 ⊻ 𝜓) → (𝜑 ↔ ¬ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-xor 1387 | . . 3 ⊢ ((𝜑 ⊻ 𝜓) ↔ ((𝜑 ∨ 𝜓) ∧ ¬ (𝜑 ∧ 𝜓))) | |
| 2 | imnan 691 | . . . . 5 ⊢ ((𝜑 → ¬ 𝜓) ↔ ¬ (𝜑 ∧ 𝜓)) | |
| 3 | 2 | biimpri 133 | . . . 4 ⊢ (¬ (𝜑 ∧ 𝜓) → (𝜑 → ¬ 𝜓)) |
| 4 | 3 | adantl 277 | . . 3 ⊢ (((𝜑 ∨ 𝜓) ∧ ¬ (𝜑 ∧ 𝜓)) → (𝜑 → ¬ 𝜓)) |
| 5 | 1, 4 | sylbi 121 | . 2 ⊢ ((𝜑 ⊻ 𝜓) → (𝜑 → ¬ 𝜓)) |
| 6 | pm2.53 723 | . . . . 5 ⊢ ((𝜓 ∨ 𝜑) → (¬ 𝜓 → 𝜑)) | |
| 7 | 6 | orcoms 731 | . . . 4 ⊢ ((𝜑 ∨ 𝜓) → (¬ 𝜓 → 𝜑)) |
| 8 | 7 | adantr 276 | . . 3 ⊢ (((𝜑 ∨ 𝜓) ∧ ¬ (𝜑 ∧ 𝜓)) → (¬ 𝜓 → 𝜑)) |
| 9 | 1, 8 | sylbi 121 | . 2 ⊢ ((𝜑 ⊻ 𝜓) → (¬ 𝜓 → 𝜑)) |
| 10 | 5, 9 | impbid 129 | 1 ⊢ ((𝜑 ⊻ 𝜓) → (𝜑 ↔ ¬ 𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 ∨ wo 709 ⊻ wxo 1386 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 |
| This theorem depends on definitions: df-bi 117 df-xor 1387 |
| This theorem is referenced by: xornbi 1397 zeo4 12035 odd2np1 12038 |
| Copyright terms: Public domain | W3C validator |