| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > xoror | GIF version | ||
| Description: XOR implies OR. (Contributed by BJ, 19-Apr-2019.) |
| Ref | Expression |
|---|---|
| xoror | ⊢ ((𝜑 ⊻ 𝜓) → (𝜑 ∨ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xoranor 1388 | . 2 ⊢ ((𝜑 ⊻ 𝜓) ↔ ((𝜑 ∨ 𝜓) ∧ (¬ 𝜑 ∨ ¬ 𝜓))) | |
| 2 | 1 | simplbi 274 | 1 ⊢ ((𝜑 ⊻ 𝜓) → (𝜑 ∨ 𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∨ wo 709 ⊻ wxo 1386 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 |
| This theorem depends on definitions: df-bi 117 df-xor 1387 |
| This theorem is referenced by: mtpxor 1437 |
| Copyright terms: Public domain | W3C validator |