Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > xoror | GIF version |
Description: XOR implies OR. (Contributed by BJ, 19-Apr-2019.) |
Ref | Expression |
---|---|
xoror | ⊢ ((𝜑 ⊻ 𝜓) → (𝜑 ∨ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xoranor 1372 | . 2 ⊢ ((𝜑 ⊻ 𝜓) ↔ ((𝜑 ∨ 𝜓) ∧ (¬ 𝜑 ∨ ¬ 𝜓))) | |
2 | 1 | simplbi 272 | 1 ⊢ ((𝜑 ⊻ 𝜓) → (𝜑 ∨ 𝜓)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∨ wo 703 ⊻ wxo 1370 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 |
This theorem depends on definitions: df-bi 116 df-xor 1371 |
This theorem is referenced by: mtpxor 1421 |
Copyright terms: Public domain | W3C validator |