Proof of Theorem xoranor
| Step | Hyp | Ref
 | Expression | 
| 1 |   | df-xor 1387 | 
. . 3
⊢ ((𝜑 ⊻ 𝜓) ↔ ((𝜑 ∨ 𝜓) ∧ ¬ (𝜑 ∧ 𝜓))) | 
| 2 |   | ax-ia3 108 | 
. . . . . . 7
⊢ (𝜑 → (𝜓 → (𝜑 ∧ 𝜓))) | 
| 3 | 2 | con3d 632 | 
. . . . . 6
⊢ (𝜑 → (¬ (𝜑 ∧ 𝜓) → ¬ 𝜓)) | 
| 4 |   | olc 712 | 
. . . . . 6
⊢ (¬
𝜓 → (¬ 𝜑 ∨ ¬ 𝜓)) | 
| 5 | 3, 4 | syl6 33 | 
. . . . 5
⊢ (𝜑 → (¬ (𝜑 ∧ 𝜓) → (¬ 𝜑 ∨ ¬ 𝜓))) | 
| 6 |   | pm3.21 264 | 
. . . . . . 7
⊢ (𝜓 → (𝜑 → (𝜑 ∧ 𝜓))) | 
| 7 | 6 | con3d 632 | 
. . . . . 6
⊢ (𝜓 → (¬ (𝜑 ∧ 𝜓) → ¬ 𝜑)) | 
| 8 |   | orc 713 | 
. . . . . 6
⊢ (¬
𝜑 → (¬ 𝜑 ∨ ¬ 𝜓)) | 
| 9 | 7, 8 | syl6 33 | 
. . . . 5
⊢ (𝜓 → (¬ (𝜑 ∧ 𝜓) → (¬ 𝜑 ∨ ¬ 𝜓))) | 
| 10 | 5, 9 | jaoi 717 | 
. . . 4
⊢ ((𝜑 ∨ 𝜓) → (¬ (𝜑 ∧ 𝜓) → (¬ 𝜑 ∨ ¬ 𝜓))) | 
| 11 | 10 | imdistani 445 | 
. . 3
⊢ (((𝜑 ∨ 𝜓) ∧ ¬ (𝜑 ∧ 𝜓)) → ((𝜑 ∨ 𝜓) ∧ (¬ 𝜑 ∨ ¬ 𝜓))) | 
| 12 | 1, 11 | sylbi 121 | 
. 2
⊢ ((𝜑 ⊻ 𝜓) → ((𝜑 ∨ 𝜓) ∧ (¬ 𝜑 ∨ ¬ 𝜓))) | 
| 13 |   | pm3.14 754 | 
. . . 4
⊢ ((¬
𝜑 ∨ ¬ 𝜓) → ¬ (𝜑 ∧ 𝜓)) | 
| 14 | 13 | anim2i 342 | 
. . 3
⊢ (((𝜑 ∨ 𝜓) ∧ (¬ 𝜑 ∨ ¬ 𝜓)) → ((𝜑 ∨ 𝜓) ∧ ¬ (𝜑 ∧ 𝜓))) | 
| 15 | 14, 1 | sylibr 134 | 
. 2
⊢ (((𝜑 ∨ 𝜓) ∧ (¬ 𝜑 ∨ ¬ 𝜓)) → (𝜑 ⊻ 𝜓)) | 
| 16 | 12, 15 | impbii 126 | 
1
⊢ ((𝜑 ⊻ 𝜓) ↔ ((𝜑 ∨ 𝜓) ∧ (¬ 𝜑 ∨ ¬ 𝜓))) |