ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xorbi2d GIF version

Theorem xorbi2d 1380
Description: Deduction joining an equivalence and a left operand to form equivalence of exclusive-or. (Contributed by Jim Kingdon, 7-Oct-2018.)
Hypothesis
Ref Expression
xorbid.1 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
xorbi2d (𝜑 → ((𝜃𝜓) ↔ (𝜃𝜒)))

Proof of Theorem xorbi2d
StepHypRef Expression
1 xorbid.1 . . . 4 (𝜑 → (𝜓𝜒))
21orbi2d 790 . . 3 (𝜑 → ((𝜃𝜓) ↔ (𝜃𝜒)))
31anbi2d 464 . . . 4 (𝜑 → ((𝜃𝜓) ↔ (𝜃𝜒)))
43notbid 667 . . 3 (𝜑 → (¬ (𝜃𝜓) ↔ ¬ (𝜃𝜒)))
52, 4anbi12d 473 . 2 (𝜑 → (((𝜃𝜓) ∧ ¬ (𝜃𝜓)) ↔ ((𝜃𝜒) ∧ ¬ (𝜃𝜒))))
6 df-xor 1376 . 2 ((𝜃𝜓) ↔ ((𝜃𝜓) ∧ ¬ (𝜃𝜓)))
7 df-xor 1376 . 2 ((𝜃𝜒) ↔ ((𝜃𝜒) ∧ ¬ (𝜃𝜒)))
85, 6, 73bitr4g 223 1 (𝜑 → ((𝜃𝜓) ↔ (𝜃𝜒)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 708  wxo 1375
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709
This theorem depends on definitions:  df-bi 117  df-xor 1376
This theorem is referenced by:  xorbi12d  1382
  Copyright terms: Public domain W3C validator