| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > xorbi2d | GIF version | ||
| Description: Deduction joining an equivalence and a left operand to form equivalence of exclusive-or. (Contributed by Jim Kingdon, 7-Oct-2018.) |
| Ref | Expression |
|---|---|
| xorbid.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| xorbi2d | ⊢ (𝜑 → ((𝜃 ⊻ 𝜓) ↔ (𝜃 ⊻ 𝜒))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xorbid.1 | . . . 4 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | 1 | orbi2d 791 | . . 3 ⊢ (𝜑 → ((𝜃 ∨ 𝜓) ↔ (𝜃 ∨ 𝜒))) |
| 3 | 1 | anbi2d 464 | . . . 4 ⊢ (𝜑 → ((𝜃 ∧ 𝜓) ↔ (𝜃 ∧ 𝜒))) |
| 4 | 3 | notbid 668 | . . 3 ⊢ (𝜑 → (¬ (𝜃 ∧ 𝜓) ↔ ¬ (𝜃 ∧ 𝜒))) |
| 5 | 2, 4 | anbi12d 473 | . 2 ⊢ (𝜑 → (((𝜃 ∨ 𝜓) ∧ ¬ (𝜃 ∧ 𝜓)) ↔ ((𝜃 ∨ 𝜒) ∧ ¬ (𝜃 ∧ 𝜒)))) |
| 6 | df-xor 1387 | . 2 ⊢ ((𝜃 ⊻ 𝜓) ↔ ((𝜃 ∨ 𝜓) ∧ ¬ (𝜃 ∧ 𝜓))) | |
| 7 | df-xor 1387 | . 2 ⊢ ((𝜃 ⊻ 𝜒) ↔ ((𝜃 ∨ 𝜒) ∧ ¬ (𝜃 ∧ 𝜒))) | |
| 8 | 5, 6, 7 | 3bitr4g 223 | 1 ⊢ (𝜑 → ((𝜃 ⊻ 𝜓) ↔ (𝜃 ⊻ 𝜒))) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 ∨ wo 709 ⊻ wxo 1386 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 |
| This theorem depends on definitions: df-bi 117 df-xor 1387 |
| This theorem is referenced by: xorbi12d 1393 |
| Copyright terms: Public domain | W3C validator |